6.0/4.0 VU Formale Methoden der Informatik 185.291 30 January 2015				
$\underset{\substack{\text { Konoratal } \\ \text { Sund }}}{\text { did }}$		Familiemame (farily name)	Vorame (first name)	

1.) Consider the following 2 problems:

3-COLORABILITY (3-COL)

INSTANCE: An undirected graph $G=(V, E)$.
QUESTION: Does G have a 3-coloring? That is, does there exist a function μ from vertices in V to values in $\{1,2,3\}$ such that $\mu\left(v_{1}\right) \neq \mu\left(v_{2}\right)$ for any edge $\left[v_{1}, v_{2}\right] \in E$.

UNDIRECTED GRAPH HOMOMORPHISM (HOM)

INSTANCE: A pair $\left(G_{1}, G_{2}\right)$, where $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are undirected graphs.

QUESTION: Does there exist a homomorphism from G_{1} to G_{2} ? That is, does there exist a function h from vertices in V_{1} to vertices in V_{2} such that: for any edge $\left[v_{1}, v_{2}\right] \in E_{1}$ we also have $\left[h\left(v_{1}\right), h\left(v_{2}\right)\right] \in E_{2}$?

We provide next a reduction from 3-COL to HOM. Let $G=(V, E)$ be an arbitrary undirected graph (i.e. an arbitrary instance of 3-COL). From G we construct a pair $\left(G_{1}, G_{2}\right)$ of undirected graphs. We let $G_{1}=G$ and let $G_{2}=\left(V_{2}, E_{2}\right)$ be as follows:

- $V_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$, and
- E_{2} consists of exactly the 3 (undirected) edges $\left[v_{1}, v_{2}\right],\left[v_{2}, v_{3}\right]$ and $\left[v_{1}, v_{3}\right]$.

Task: Prove the " \Leftarrow " direction in the proof of correctness of the reduction, i.e. prove the following statement: if $\left(G_{1}, G_{2}\right)$ is a positive instance of $\mathbf{H O M}$, then G is a positive instance of $\mathbf{3 - C O L}$.

Note: For any property that you use in your proof, make it perfectly clear why this property holds (e.g., "by the problem reduction", "by the assumption X ", "by the definition X ", etc.)
(15 points)
2.) (a) First define the concept of a \mathcal{T}-interpretation. Then use it to define the following:
i. the \mathcal{T}-satisfiability of a formula;
ii. the \mathcal{T}-validity of a formula.

Additionally define the completeness of a theory \mathcal{T} and give an example for a complete and an incomplete theory.
(4 points)
(b) Let $\mathcal{T}_{E}^{d i}$ be a first-order theory containing all axioms of the theory of equality \mathcal{T}_{E} and the following two axioms:

$$
\begin{aligned}
& \forall x \forall y(p(x, y) \rightarrow(p(x, f(x, y)) \wedge p(f(x, y), y))) \quad \text { (p-density) } \\
& \forall x \forall y(p(x, y) \rightarrow x \neq y) \quad \text { (p-irreflexivity) }
\end{aligned}
$$

Prove: Let I be a $\mathcal{T}_{E}^{d i}$-interpretation with $I \models p(a, b)$,

$$
\text { then it holds that } I \models f(a, b) \neq a \wedge f(a, b) \neq b \wedge a \neq b \text {. }
$$

(c) Apply Ackermann's reduction to the following EUF-formula ψ :

$$
p(a, F(b)) \wedge F(F(c)) \doteq G(G(b)) \rightarrow p(a, c)
$$

Hint: Treat uninterpreted predicates correctly.
3.) Prove that the following correctness assertion is true regarding total correctness. Use the invariant $l * y \leq x<h * y \wedge y>0$.
Some annotation rules you might need:

```
\(\{F\} v:=e \mapsto\{F\} v:=e\left\{\exists v^{\prime}\left(F\left[v / v^{\prime}\right] \wedge v=e\left[v / v^{\prime}\right]\right)\right\}\)
if \(e\) then \(\{F\} \cdots\) else \(\{G\} \mapsto\{(e \Rightarrow F) \wedge(\neg e \Rightarrow G)\}\) if \(e\) then \(\{F\} \cdots\) else \(\{G\}\)
\(\{F\}\) if \(e\) then \(\cdots\) else \(\mapsto\{F\}\) if \(e\) then \(\{F \wedge e\} \cdots\) else \(\{G \wedge \neg e\}\)
while \(e\) do \(\cdots\) od \(\mapsto\{\) Inv \(\}\) while \(e\) do \(\left\{\operatorname{Inv} \wedge e \wedge t=t_{0}\right\} \cdots\left\{\operatorname{Inv} \wedge\left(e \Rightarrow 0 \leq t<t_{0}\right)\right\} \circ \operatorname{dn}\{\operatorname{Inv} \wedge \neg\}\)
```

$\{y>0 \wedge x \geq 0\}$
$l:=0$;
$h:=x+1$;
while $l+1 \neq h$ do
$z:=(l+h) / 2 ;$
if $z * y>x$ then
$h:=z$
else
$l:=z ;$
fi
od
$\{l * y \leq x<(l+1) * y\}$
4.) (a) Find a Kripke structure K with initial state s_{0} that has the properties AGEF p and $\mathbf{A}(\mathbf{G F} p \Rightarrow \mathbf{G F} q)$ at state s_{0}, but not $\mathbf{A G}(p \Rightarrow \mathbf{A F} q)$. Justify your choice. (5 points)
(b) Given a graph, write a C program such that CBMC can determine whether the given graph is 3 -colorable. Augment the given code corresponding to the following subtasks. The 2-dimensional array graph encodes the adjacency matrix.

```
#define TRUE 1
#define FALSE 0
#define RED 0
#define GREEN 1
#define BLUE 2
#define N 4 // Number of nodes in the graph
int graph[N][N] = { { 0, 1, 0, 1 }, { 1, 0, 0, 0 }, ... };
int coloring[N];
int nondet_int();
```

i. Write a loop that nondeterministically guesses a coloring for the graph. A coloring assigns to every node of the given graph either the color red, green, or blue.
ii. Write a loop that checks whether the coloring assigns to every node in the graph a color that is different to the colors of its neighbors. Furthermore, ensure that CBMC reports a 3 -coloring of the graph in case there exists one.
(c) Show that simulation is a transitive relation: Given any 3 Kripke structures $K_{1}=$ $\left\{S_{1}, R_{1}, L_{1}\right\}, K_{2}=\left\{S_{2}, R_{2}, L_{2}\right\}$ and $K_{3}=\left\{S_{3}, R_{3}, L_{3}\right\}$ such that $K_{1} \leq K_{2}$ and $K_{2} \leq$ K_{3}, it holds that $K_{1} \leq K_{3}$.

DEFINITIONS

Let $M_{1}=\left(S_{1}, I_{1}, R_{1}, L_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, R_{2}, L_{2}\right)$ be two Kripke structures.

Simulation

A relation $H \subseteq S_{1} \times S_{2}$ is a simulation relation if for each $\left(s, s^{\prime}\right) \in H$ holds:

- $L_{1}(s)=L_{2}\left(s^{\prime}\right)$, and
- for each $(s, t) \in R_{1}$ there is a $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ such that $\left(t, t^{\prime}\right) \in H$.
M_{2} simulates M_{1} (denoted as $M_{1} \leq M_{2}$), if there is a simulation relation $H \subseteq S_{1} \times S_{2}$ such that
- for each initial state $s \in I_{1}$ there is an initial state $s^{\prime} \in I_{2}$ with $\left(s, s^{\prime}\right) \in H$.

