Examination for "Logic and Computability (185.A45)" 30 October, 2012 2nd Exam

Matrikelnummer	FAMILY NAME	First Name

Remark on Notation:

We use \supset for material implication.

Task 1:

Formalize the following sentence in predicate logic:

"If all politicians are showmen and no showman is sincere then some politicians are insincere."

Is the resulting formula valid in classical logic? Prove your answer in terms of semantical arguments.

Task 2:

Let $sk(\cdot)$ be the skolemization operator discussed in the course and let F be the formula $\exists x P(x)$.

Are the formulas

- 1. $sk(F) \supset F$
- 2. $F \supset sk(F)$

valid? If not, then provide a counterexample (i.e., an interpretation I together with a domain D and a proof that the formula evaluates to false under I). Otherwise argue in detail, why the implication holds. Are the formulas valid for arbitrary closed formulas F?

Task 3:

Given the formula

$$\exists x (P \supset Q(x)) \supset (P \supset \exists x Q(x))$$

- 3.1 Provide a sequent calculus or a natural deduction proof for the formula, in case x is not in FV(P) (= free variables of P)
- 3.2 Exhibit an interpretation that falsifies the formula, in case P := P(x)

Task 4:

Are the sets

- $\{x \mid \exists y \Phi_x(y) = 0\}$
- $\{x \mid \Phi_x(5) \uparrow \land x \leq 5\}$

recursive, r.e. or none of them? Motivate your answers.

Task 5:

Show that the formula $(\Diamond A \lor \Diamond \neg B) \supset \Diamond (B \supset A)$ is valid in all Kripke frames. (Use the truth conditions for \Diamond, \lor, \supset directly. Do *not* reformulate the formula!)

Task 6:

For sake of concretness, let *arithmetic programs* be defined as follows (with the obvious semantics):

$\langle program \rangle$::=	$\langle assignment \rangle \mid \mathbf{begin} \langle program \rangle; \langle program \rangle \mathbf{end} \mid$
		$\underline{\mathbf{while}} \langle \mathit{cond} \rangle \underline{\mathbf{do}} \langle \mathit{program} \rangle \underline{\mathbf{od}} \underline{\mathbf{if}} \langle \mathit{cond} \rangle \underline{\mathbf{then}} \langle \mathit{program} \rangle \underline{\mathbf{else}} \langle \mathit{program} \rangle \underline{\mathbf{endif}}$
$\langle assignment \rangle$::=	$\langle variable \rangle \leftarrow \langle term \rangle$
$\langle \mathit{cond} \rangle$::=	$\langle term \rangle = \langle term \rangle \mid \langle term \rangle < \langle term \rangle \mid \neg \langle cond \rangle \mid (\langle cond \rangle \operatorname{\underline{and}} \langle cond \rangle) \mid (\langle cond \rangle \operatorname{\underline{or}} \langle cond \rangle)$
$\langle term \rangle$::=	$0 \mid 1 \mid \langle variable \rangle \mid (\langle term \rangle + \langle term \rangle) \mid (\langle term \rangle \cdot \langle term \rangle)$
$\langle variable \rangle$::=	$x_1 \mid x_2 \mid \ldots$

An arithmetic program π is called *partially correct* with respect to precondition A and postconditon B, if B is true in every state where π terminates when started in a state where A holds. (A and B are artihmetic formulas with free variables that may be manipulated by π .)

What follows about the provability of partial correctness of arithmetic programs from Gödel's first incompleteness theorem? Explain!