VU Logic and Computation Exercises – Computability Theory

(Fixed) Deadline December 28th, 2012

December 13, 2012

Notation: We use Φ_k to denote the k-th computable function and $Dom(\Phi_k)$ for the set $\{x \mid \Phi_k(x) \downarrow\}$.

- 1. Exhibit a lambda term which simulates the boolean function "not" (hint: encode true **T** by $\lambda xy.x$ and false **F** by $\lambda xy.y$)
- Is the set {i | Dom(Φ_i) = ∅} recursive, recursive enumerable or none of them?
 (A formal proof is needed)
- 3. Is there an index p such that Φ_p is the constant function always equal to p+2?

(A formal proof is needed)

4. Show that the function

$$f_1(x) = \begin{cases} \min n \text{ such that } \Phi_x(n) \downarrow & \text{if } \exists n \Phi_x(n) \downarrow \\ 0 & \text{otherwise} \end{cases}$$

is *not* computable. (A formal proof is needed)

5. (*) Show that the function

$$f_2(x) = \begin{cases} \min n \text{ such that } \Phi_x(n) \downarrow & \text{if } \exists n \Phi_x(n) \downarrow \\ \uparrow & \text{otherwise} \end{cases}$$

is *not* computable

Note: The exercise marked by (*) is optional (= not compulsory)