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Exercise Find some further examples of modal formulas with one schematic variable
that are valid in F , as above, such that the removal of some (which?) accessibilities
leads to invalidity.

Solution. Consider the following:

1. It is easy to see that ♦(A ∧ A), ♦(A ∨ ¬A) are valid in F , but become invalid if,
e.g., R(w,w) and R(w, u) are removed since the operator ♦ states an existential
claim for an accessible world.

2. The formula scheme �A ⊃ A is valid in F , but ceases to be valid if R(w,w) is
removed.

3. The formula scheme �A ⊃ ♦A is valid in F , but is not valid if R(w,w) and R(u,w)
are removed.

4. The formula scheme A ⊃ �♦A is valid in F , but is not valid if R(w, u) is removed.

5. The formula scheme �A ⊃ ��A is valid in F , but is not valid if R(w,w) is
removed. 4

Exercise Show that the intersection of two logics is also a logic. What about the union
of logics?

Solution. Let L1 and L2 be logics, π be an arbitrary substitution and for every formula F ,
let F [π] denote the formula resulting from F by successively applying the substitution
π. Let F ∈ L1 ∩ L2. First, consider F [π]. Since F ∈ L1 and F ∈ L2, we have by
hypotheses that F [π] ∈ L1 and F [π] ∈ L2, hence (by basic set theory) we immediately
infer F [π] ∈ L1 ∩ L2. Now let A ∈ L1 ∩ L2 and A ⊃ B ∈ L1 ∩ L2. Since again
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A,A ⊃ B ∈ L1 and A,A ⊃ B ∈ L2, we obtain by hypothesis that B ∈ L1 and B ∈ L2

and hence, B ∈ L1 ∩ L2. Summing up, we showed that L1 ∩ L2 is both closed under
substitution and under MP, hence, L1 ∩ L2 constitutes a logic by the very definition.

The union of logics is in the general case not a logic again. For that, consider L1 = {⊥}
and L2 = {⊥ ⊃ >}. Obviously, L1 and L2 constitute both a logic in their own sense.
But L = L1 ∪ L2 = {⊥ ⊃ >,⊥} is not a logic, since ⊥ ⊃ > ∈ L and ⊥ ∈ L, but > 6∈ L,
i.e., L is not closed under MP. 4

Exercise Find a counter-example to F ⊃ �F .

Solution. Let F = p for some p ∈ PV andM = 〈W,R, V 〉 a Kripke interpretation given
as follows (those and only those propositional variables are mentioned at each world
which are true in that world):

w v
p

Obviously we have that M, w |= p, but clearly we do not have M, w |= �p and, hence,
M, w 6|= p ⊃ �p and 6|= p ⊃ �p as required. 4

Exercise Prove formally that �A ⊃ A characterizes reflexivity. Prove that �A ⊃ ��A
characterizes transitivity.

Solution. Given a frame F = 〈W,R〉 and some world w ∈W , let R|w := {v | (w, v) ∈ R}.
First, we consider reflexivity:

(⇐): Suppose that F = 〈W,R〉 is reflexive. Then, for all w ∈ W it holds that wRw.
Now let w ∈ W be an arbitrary world and M an arbitrary interpretation based on F .
Suppose we have that M, w |= �A. By semantics, we obtain that M, u |= A for every
world u ∈ W such that wRu. Since F is reflexive we also have M, w |= A, i.e., if
F |= �A then F |= A and F |= �A ⊃ A as desired.

(⇒): We proceed indirectly. Suppose that F = 〈W,R〉 is not reflexive. Then, there
must be some world w ∈ W such that (w,w) 6∈ R. Define an assignment V (p, v) = 1 iff
v ∈ R|w. Let M = 〈W,R, V 〉. Obviously we have by def. of M that M, w |= �p but
M, w 6|= p. Hence, F 6|= �p ⊃ p as required.

Now consider transitivity:

(⇐): Suppose that F is transitive. Then, for every s, t, u ∈ W it holds that if sRt and
tRu we have sRu. Now let M be a model based on F and let w ∈ W be an arbitrary
world. Suppose that M, w |= �A. Then, M, v |= A for every world v ∈ W such that
wRv. If M, w 6|= ��A, then there must be some world t ∈ W such that wRt and
M, t 6|= �A. Thus, there must be some world u ∈W such that tRu butM, u 6|= A. But
by transitivity we also obtain that wRu and, hence,M, u |= A has to hold by hypothesis.
Hence, if M, w |= �A, then M, w |= ��A and we obtain F |= �A ⊃ ��A as desired.
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(⇒): Suppose that F |= �A ⊃ ��A holds. We proceed indirectly. Assume that F is
not transitive. Then there must be some s, t, u ∈W such that sRt and tRu but not sRu.
We define an assignment V such that 〈W,R, V 〉 6|= �A ⊃ ��A for some A. For some
p ∈ PV define V (p, v) = 1 iff v ∈ R|s. By construction, we have that 〈W,R, V 〉, s |= �p,
but since R|t is not empty, we also have 〈W,R, V 〉, s 6|= ��p since (s, u) 6∈ R. Hence,
F 6|= �p ⊃ ��p as required. 4

Exercise

1. Find (at least one) appropriate internet resource for ’bisimulation’ as well as for
’bounded morphism’ (also called ’p-morphism’).

2. Summarize the central definition and fact(s) precisely.

3. Give non-trivial examples of bisimilar models.

4. Apply a bounded morphism to show that asymmetry is not characterizable.

Solution. Ad (1): my sources are

(i) http://en.wikipedia.org/wiki/Kripke_semantics and

(ii) http://www.mathematik.tu-darmstadt.de/~otto/papers/mlhb.pdf, paper by
Goranko et. al.

We begin with (2) and define the central terms:

In the following let F1 = 〈W,R〉 and F2 = 〈W ′, R′〉 be Kripke frames and let M1 =
〈W,R, V 〉 be a Kripke model based on F1 andM2 = 〈W ′, R′, V ′〉 a Kripke model based
on F2. A bisimulation between F1 and F2 is a non-empty relation ρ ⊆ W ×W ′ such
that the following conditions hold for every wρw′:

(i) if wRu for some u ∈W , then there is some u′ ∈W ′ such that w′R′u′ and uρu′.

(ii) if w′R′u′ for some u′ ∈W ′, then there is some u ∈W such that wRu and uρu′.

A bisimulation ρ between to Kripke interpretations M1 and M2 additionally has to
satisfy the following condition for every propositional atom p and any wρw′:

(i) M1, w |= p iff M2, w
′ |= p.

Two Kripke frames (interpretations) F1,F2 (M1,M2) are called bisimilar if there exists
a bisimulation ρ between F1 and F2 (M1 and M2).

Bounded morphisms or p-morphisms are special cases of bisimulations. A function
ρ : W 7→ W ′ is a bounded morphism if its graph {(w, v) ∈ W × W ′ | v = ρ(w)} is a
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bisimulation. Bounded morphisms between frames are similarly defined. Hence, we can
conclude the following defining conditions for a bounded morphism ρ : W 7→W ′ between
M1 and M2:

1. For every atom p, M1, w |= p iff M2, ρ(w) |= p.

2. For any w ∈W , if wRu for some u, then ρ(w)R′ρ(u).

3. For any w ∈W , if ρ(w)R′u′ for some u′ ∈W ′, then there is some u ∈W such that
ρ(u) = u′ and wRu.

If a bounded morphism ρ betweenM1 andM2 is onto, then we say thatM2 is a bounded
morphic image of M1 (for frames likewise).

The following two models are bisimilar (the bisimulation ρ is represented by dashed
arrows):

0

1

2

3

4p p p

ρ

ρ

ρ

The central result, which we will also use for showing that asymmetry is not character-
izable, is the following

Theorem. Let F1 = 〈W,R〉, F2 = 〈W ′, R′〉 be Kripke frames and ρ : W 7→ W ′ a p-
morphism. If ρ is one-to-one, then F2 |= A implies F1 |= A. If ρ is onto, then F1 |= A
implies F2 |= A.

Now suppose that there is a formula A such that F |= A iff F is asymmetric. Let
F1 = 〈W,R〉 and F2 = 〈W ′, R′〉 such that

W = {a, b}, R = {(a, a), (b, a)},
W ′ = {c}, R′ = {(c, c)}.

Clearly, F1 is asymmetric, since (a, b) 6∈ R, but F2 is obviously symmetric. Let ρ : W 7→
W ′ a function such that ρ(w) = c for every w ∈W . Clearly, ρ constitutes a p-morphism
and is onto. Since F1 is asymmetric, it must hold that F1 |= A. By the theorem above,
it must also hold that F2 |= A. But F2 is not asymmetric and, hence, there can be no
such formula A which characterizes asymmetry. 4
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Exercise Show analogously the validity of formulas 3 and 7.

Solution. We begin with formula 3: γ : (A∧B) ⊃ (B∧A) means procedure γ transforms
every proof ρ of A ∧B into a proof π of B ∧A. Let ρ be the pair 〈δ, η〉 where δ : A and
η : B. The procedure γ is constructed in the following way: extract δ from ρ and η from
ρ and construct the proof π : 〈η, δ〉. Then, clearly, we have that π : B ∧ A and γ is a
procedure which transforms ρ : A ∧B into π : B ∧A.

Now consider formula 7: γ : ¬(A ∨ B) ⊃ (¬A ∧ ¬B) means procedure γ transforms a
proof ρ of (A ∨ B) ⊃ ⊥ into a proof π of (A ⊃ ⊥) ∧ (B ⊃ ⊥). Clearly, ρ is a refutation
of A ∨ B, i.e., ρ can construct from any proof of A ∨ B a proof of ⊥. The proof π is
constructed from ρ in the following way: let η1 = 〈l, ν1〉 and η2 = 〈r, ν2〉 where ν1 : A
and ν2 : B. Clearly, η1 : A ∨ B and η2 : A ∨ B. Now we let π = 〈ρ(η1), ρ(η2)〉, i.e., we
apply the refutation ρ to both η1 and η2. Then, ρ(η1) : A ⊃ ⊥ and ρ(η2) : B ⊃ ⊥ and π
constitutes a proof of (A ⊃ ⊥) ∧ (B ⊃ ⊥). 4

Exercise Show the validity of the following formula in LK: sk(∀x∀y∃z∀u∃vF (x, y, z, u, v))→
∀x∀y∃z∀u∃vF (x, y, z, u, v)

Solution. We first skolemize the formula ∀x∀y∃z∀u∃vF (x, y, z, u, v) step-by-step:

sk(∀x∀y∃z∀u∃vF (x, y, z, u, v))

 ∀x∀y∃z∀uF (x, y, z, u, f(x, y, z, u))

 ∀x∀y∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)).

Now consider the following proof in LK:

Axiom

F (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` F (x, y, g(x, y), u, f(x, y, g(x, y), u))
(∃, r)

F (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∃vF (x, y, g(x, y), u, v)
(∀, l)

∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∃vF (x, y, g(x, y), u, v)
(∀, r)

∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∀u∃vF (x, y, g(x, y), u, v)
(∃, r)

∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∃z∀u∃vF (x, y, z, u, v)
(∀, l)

∀y∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∃z∀u∃vF (x, y, z, u, v)
(∀, l)

∀x∀y∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∃z∀u∃vF (x, y, z, u, v)
(∀, r)

∀x∀y∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∀y∃z∀u∃vF (x, y, z, u, v)
(∀, r)

∀x∀y∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u)) ` ∀x∀y∃z∀u∃vF (x, y, z, u, v)
(→, r)

` ∀x∀y∀uF (x, y, g(x, y), u, f(x, y, g(x, y), u))→ ∀x∀y∃z∀u∃vF (x, y, z, u, v)

4

Exercise Prove that if ∀x1 · · · ∀xnF is satisfiable, then ∀x1 · · · ∀xnδ(F ) is satisfiable.

Solution. First notice that by the lemma about the definitions, it suffices to show that if∧
G∈Σ(F )EG is satisfiable, then

∧
G∈Σ(F )DG is satisfiable too. We prove the statement
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by induction on the logical complexity of F . In the following let X = {x1, . . . , xk} be
the set of free variables from G. For some formula F , we shall write ∀XF instead of
∀x1 · · · ∀xkF . For an arbitrary formula F , let Σ(F ) be the set of all subformulas of
F and let ΣE

∧ (F ) :=
∧

G∈Σ(F )EG and ΣD
∧ (F ) :=

∧
G∈Σ(F )DG, where EG and DG are

constructed like in the lecture slides.

For the base case, assume that F is an atomic formula and assume that ΣE
∧ (F ) = EF is

satisfiable. Then EF is of the form ∀X (pF (x1, . . . , xk)↔ F ) and ΣD
∧ (F ) = DF is of the

form ∀X (¬pF (X ) ∨ F ) ∧ ∀X (pF (X ) ∨ ¬F ). By using the equivalences (which are easily
proved)

A↔ B ≡ (A→ B) ∧ (B → A) ≡ (A ∨ ¬B) ∧ (¬A ∧B),

∀XA ∧ ∀XB ≡ ∀X (A ∧B),

we immediately obtain by equivalence replacement theorem of classical logic, that EF ≡
DF . Hence, since EF is satisfiable, DF must be satisfiable too.

Now assume that F = F1 ? F2 (? ∈ {∧,∨,→}) has complexity n + 1, where F1, F2 are
formulas of complexity less or equal to n and assume that for ϕ ∈ {F1, F2} if ΣE

∧ (ϕ) is
satisfiable, then ΣD

∧ (ϕ) is satisfiable and that ΣE
∧ (F ) is satisfiable. Let {y1, . . . , yl} ⊆ X

be the free variables of F1 and {z1, . . . , zm} ⊆ X those of F2. Then, EF is of the form

∀X (pF (X )↔ (pF1(y1, . . . , yl) ? pF2(z1, . . . , zm))). (1)

Consider the following equivalences for ∧:

A↔ (B ∧ C) ≡ (A→ (B ∧ C)) ∧ ((B ∧ C)→ A) ≡
(¬A ∨ (B ∧ C)) ∧ (¬(B ∧ C) ∨A) ≡
(¬A ∨B) ∧ (¬A ∨ C) ∧ (A ∨ ¬B ∨ ¬C).

If F = F1 ∧ F2, then DF must be of the form

∀X (¬pF (X ) ∨ pF1
(X )) ∧ ∀X (¬pF (X ) ∨ pF2

(X )) ∧ ∀X (pF (X ) ∨ ¬pF1
(X ) ∨ ¬pF2

(X )). (2)

It is obvious that (1) is equivalent to (2) by equivalence replacement theorem. Fur-
thermore, the equivalence of (1) and (2), the construction of DF , and the hypotheses
give us that ΣD

∧ (F ) is satisfiable.1 The cases for ∨,→ and ¬ are treated similarly (for
negation, of course F = ¬F1 and (1) is of the form as given in the slides). We just give
the equivalences:

A↔ (B ∨ C) ≡ (A→ (B ∨ C)) ∧ ((B ∨ C)→ A) ≡
(¬A ∨B ∨ C) ∧ (¬(B ∨ C) ∨A) ≡
(¬A ∨B ∨ C) ∧ (A ∨ ¬B) ∧ (A ∨ ¬C).

1Of course, this argument does not rigorously establish the connection between ΣD
∧ (F ) and ΣE

∧ (F ).
However, it is easy to see that the “transformations” which occur between DF and EF preserve sat-
isfiability because of (i) equivalent transformations in the case of propositional connectives and (ii)
Skolemization in the case of quantifiers. Hence, we only justify the satisfiability equivalence of these
transformations.
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A↔ (B → C) ≡ (A→ (B → C)) ∧ ((B → C)→ A) ≡
(¬A ∨ ¬B ∨ C) ∧ (¬(¬B ∨ C) ∨A) ≡
(¬A ∨ ¬B ∨ C) ∧ (A ∨B) ∧ (A ∨ ¬C).

A↔ ¬B ≡ (A→ ¬B) ∧ (¬B → A) ≡
(¬A ∨ ¬B) ∧ (B ∨A).

Consider the case where F = QuF1 (for Q ∈ {∀,∃}). Then, DF is of the form

∀X (pF (X )↔ QvpF1(X , v)).

Consider the equivalences for the universal quantifier (suppose that u does not occur
free in A):

∀X (A(X )↔ ∀uB(X , u)) ≡ ∀X ((A(X )→ ∀uB(X , u)) ∧ (∀uB(X , u)→ A(X ))) ≡
∀X ((¬A(X ) ∨ ∀uB(X , u)) ∧ (∃u¬B(X , u) ∨A(X ))) ≡
∀X∀u(¬A(X ) ∨B(X , u)) ∧ ∀X (∃u¬B(X , u) ∨A(X )).

Skolemization results in the satisfiability equivalent formula ∀X∀u(¬A(X ) ∨B(X , u)) ∧
∀X (¬B(X , f(X )) ∨A(X )).

At last, consider the case of the existential quantifier:

∀X (A(X )↔ ∃uB(X , u)) ≡ ∀X ((A(X )→ ∃uB(X , u)) ∧ (∃uB(X , u)→ A(X ))) ≡
∀X ((¬A(X ) ∨ ∃uB(X , u)) ∧ (∀u¬B(X , u) ∨A(X ))) ≡
∀X (¬A(X ) ∨ ∃uB(X , u)) ∧ ∀X∀u(¬B(X , u) ∨A(X )).

Skolemization results in the satisfiability equivalent formula ∀X (¬A(X )∨B(X , f(X )))∧
∀X∀u(¬B(X , u) ∨A(X )). 4

Exercise Compute δ(F )′ for F = ∃y(p(x, g(x, y))→ ∃z¬(p(g(x, y), z) ∨ p(y, x))).

Solution. Let

F1 = p(x, g(x, y))→ ∃z¬(p(g(x, y), z) ∨ p(y, x)),

F2 = ∃z¬(p(g(x, y), z) ∨ p(y, x)),

F3 = ¬(p(g(x, y), z) ∨ p(y, x)),

F4 = p(g(x, y), z) ∨ p(y, x).

Now consider the set Σ(F ) consisting of all non-atomic subformulas. We have that

Σ(F ) = {F} ∪ {Fi | 1 ≤ i ≤ 5}.
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For each G ∈ Σ(F ), we shall introduce some new atom pG(x1, . . . , xk) where x1, . . . , xk
are the corresponding free variables of G. We introduce the following definitions:

G1 := ∀x∀y∀z(pF4(x, y, z)↔ (p(g(x, y), z) ∨ p(y, x))),

G2 := ∀x∀y∀z(pF3(x, y, z)↔ ¬pF4(x, y, z)),

G3 := ∀x∀y(pF2(x, y)↔ ∃u pF3(x, y, u)),

G4 := ∀x∀y(pF1(x, y)↔ (p(x, g(x, y))→ pF2(x, y))),

G5 := ∀x(pF (x)↔ ∃u pF1(x, u)).

Now we proceed translating each defining formula to CNF:

DG1  ∀x∀y∀z(¬pF4(x, y, z) ∨ p(g(x, y), z) ∨ p(y, x)) ∧
∀x∀y∀z(pF4(x, y, z) ∨ ¬p(g(x, y), z)) ∧ ∀x∀y∀z(pF4(x, y, z) ∨ ¬p(y, x)),

DG2  ∀x∀y∀z(¬pF3(x, y, z) ∨ ¬pF4(x, y, z)) ∧
∀x∀y∀z(pF3(x, y, z) ∨ pF4(x, y, z)),

DG3  ∀x∀y(¬pF2(x, y) ∨ pF3(x, y, f(x, y))) ∧
∀x∀y∀u(pF2(x, y) ∨ ¬pF3(x, y, u)),

DG4  ∀x∀y(¬pF1(x, y) ∨ ¬p(x, g(x, y)) ∨ pF2(x, y)) ∧
∀x∀y(pF1(x, y) ∨ p(x, g(x, y))) ∧ ∀x∀y(pF1(x, y) ∨ ¬pF2(x, y)),

DG5  ∀x(¬pF (x) ∨ pF1(x, h(x))) ∧ ∀x∀u(pF (x) ∨ ¬pF1(x, u)).

Now we can construct our set of clauses δ(F )′:

δ(F )′ = {¬pF4(x, y, z) ∨ p(g(x, y), z) ∨ p(y, x), pF4(x, y, z) ∨ ¬p(g(x, y), z),

pF4(x, y, z) ∨ ¬p(y, x),¬pF3(x, y, z) ∨ ¬pF4(x, y, z), pF3(x, y, z) ∨ pF4(x, y, z),

¬pF2(x, y) ∨ pF3(x, y, f(x, y)), pF2(x, y) ∨ ¬pF3(x, y, u), pF1(x, y) ∨ ¬pF2(x, y),

¬pF1(x, y) ∨ ¬p(x, g(x, y)) ∨ pF2(x, y), pF1(x, y) ∨ p(x, g(x, y))

¬pF (x) ∨ pF1(x, h(x)), pF (x) ∨ ¬pF1(x, u)}.

4

Exercise R1 Find all Robinson-resolvents of C = p(x, f(x))∨p(a, y) and D = ¬p(x, y)∨
¬p(a, f(x)) ∨ ¬p(f(x), f(y)). Specify all used renamings, mgus and (implicit) factors.

Solution. Since every clause is a (trivial) factor of itself, we first consider Robinson-
resolvents which are binary resolvents. Consider the following:

• Let C ′ = p(z, f(z)) ∨ p(a, u) be a variant of C (apply renaming ν = {x 7→ z, y 7→
u}). We can resolve upon the second literal of C ′ and the first of D using the mgu
σ = {x 7→ a, y 7→ u} obtaining the Robinson-resolvent p(z, f(z)) ∨ ¬p(a, f(a)) ∨
¬p(f(a), f(u)).
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• Let C ′ = p(z, f(z)) ∨ p(a, u) be a variant of C (apply renaming ν = {x 7→ z, y 7→
u}). We can resolve upon the first literal of C ′ and the second of D using the
mgu σ = {z 7→ a, x 7→ a} obtaining the Robinson-resolvent p(a, u) ∨ ¬p(a, y) ∨
¬p(f(a), f(y)).

• Let C ′ = p(z, f(z)) ∨ p(a, u) be a variant of C (apply renaming ν = {x 7→ z, y 7→
u}). We can resolve upon the second literal of C ′ and the second of D using the
mgu σ = {u 7→ f(x)} obtaining the Robinson-resolvent p(x, f(x)) ∨ ¬p(x, y) ∨
¬p(f(x), f(y)).

• Let C ′ = p(z, f(z)) ∨ p(a, u) be a variant of C (apply renaming ν = {x 7→ z, y 7→
u}). We can resolve upon the first literal of C ′ and the third of D using the mgu
σ = {z 7→ f(x), y 7→ f(x)} obtaining the Robinson-resolvent p(a, u)∨¬p(x, f(x))∨
¬p(a, f(x)).

• Let C ′ = p(z, f(z)) ∨ p(a, u) be a variant of C (apply renaming ν = {x 7→ z, y 7→
u}). We can resolve upon the first literal of C ′ and the first of D using the mgu
σ = {x 7→ z, y 7→ f(z)} obtaining the Robinson-resolvent p(a, u) ∨ ¬p(a, f(z)) ∨
¬p(f(z), f(f(z))).

Now we consider Robinson-resolvents which emerge from non-trivial factors, i.e., these
resolvents emerge from clauses C ′, D′ such that C ′ is a non-trivial factor of C ′ and D′ is
a non-trivial factor of D, respectively:

• Let C ′ be a factor of C by applying the mgu ν = {x 7→ a, y 7→ f(a)}, i.e.,
C ′ = p(a, f(a)). C ′ and D are variable-disjoint and we may resolve upon the first
literal of C ′ and the first of D′ using the substitution σ = {x 7→ a, y 7→ f(a)}
obtaining the Robinson-resolvent ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))).

• Let C ′ be a factor of C by applying the mgu ν = {x 7→ a, y 7→ f(a)}, i.e.,
C ′ = p(a, f(a)). C ′ and D are variable-disjoint and we may resolve upon the first
literal of C ′ and the second of D′ using the substitution σ = {x 7→ a} obtaining
the Robinson-resolvent ¬p(a, y) ∨ ¬p(f(a), f(y)).

• Let D′ be a factor of D by applying the mgu ν = {x 7→ a, y 7→ f(a)}, i.e., D′ =
¬p(a, f(a))∨¬p(f(a), f(f(a))). C and D′ are variable-disjoint and we may resolve
upon the first literal of C and the first of D′ by applying the mgu σ = {x 7→ a}
obtaining the Robinson-resolvent p(a, y) ∨ ¬p(f(a), f(f(a))).

• Let D′ be a factor of D by applying the mgu ν = {x 7→ a, y 7→ f(a)}, i.e.,
D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))). C and D′ are variable-disjoint and we may
resolve upon the second literal of C and the first of D′ by applying the mgu
σ = {y 7→ f(a)} obtaining the Robinson-resolvent p(x, f(x)) ∨ ¬p(f(a), f(f(a))).

• Let D′ be a factor of D by applying the mgu ν = {x 7→ a, y 7→ f(a)}, i.e.,
D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))). C and D′ are variable-disjoint and we may
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resolve upon the first literal of C and the second of D′ by applying the mgu
σ = {x 7→ f(a)} obtaining the Robinson-resolvent p(a, y) ∨ ¬p(a, f(a)).

• Let C ′ be a factor of C by applying the mgu ν = {x 7→ a, y 7→ f(a)}, andD′ a factor
of D by applying the substitution η = {x 7→ a, y 7→ f(a)}, i.e., C ′ = p(a, f(a))
and D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))). C ′ and D′ are variable-disjoint and we
do not have to apply any substitution to unify C ′ and D′ upon the first literals of
each, obtaining the Robinson-resolvent ¬p(f(a), f(f(a))).

4

Exercise R2 Prove that subsumed Robinson-resolvents can be discarded without sac-
rificing refutational completeness.

Solution. Let S be an unsatisfiable set of clauses. Consider the resolution operator R(S)
(Rn(S), respectively) defined in the lecture and consider the (finite) semantic tree T̂ (S)
defined for some unsatisfiable set of clauses S. The central observation is that, if some
clause C subsumes another clause D, then C fails at every node whereD fails. SupposeD
fails at node n, i.e., there is a path `1, . . . , `k, where the `i (i = 1, . . . , k) are literals, such
that for some Herbrand instance Dσ, the dual of every literal in Dσ occurs in `1, . . . , `k.
Since C subsumes D, there exists a substitution ν such that Cν is a subclause of D.
From that we immediately obtain that Cνσ is a Herbrand instance which witnesses that
C fails at node n. Hence, T̂ (R(S)) is then also strictly smaller than T̂ (S) when we
discard each subsumed clause from R(S). Thus, we must have that for some n ≥ 0 that
T̂ (Rn(S)) consists only of the root of T (S) whereupon we can conclude that � ∈ Rn(S),
since only the empty clause fails at the root of some semantic tree. 4

Exercise R3 Describe another resolution refinement (other than ordered resolution) in
detail.

Solution. We shall briefly present hyperresolution. We follow the outline given in the
book of A. Leitsch: The Resolution Calculus and his paper http://www.logic.at/

people/leitsch/resolv.pdf. Basically each resolution refinement tries to restrict the
resolution deduction. Hyperresolution itself is based on the consideration of the polar-
ity of clauses, i.e., the polarity of the literals occurring in it. Hyperresolution is now a
refinement, where only positive clauses (i.e., clauses of the form ` A1, . . . , An) are deriv-
able. The aim is to reduce the search space for further resolvents. Thereby, single-step
resolution is replaced by many-step resolution (also called macro inference) and many
resolution steps are combined to one. We quote the definition of a hyperresolvent given
by A. Leitsch (Res(C) denotes the set of resolvents of C and D):

Definition. Let C be a nonpositive clause and D1, . . . , Dn be positive clauses. Then
S : (C;D1, . . . , Dn) is called a clash sequence. Let C0 = C and Ci+1 ∈ Res({Ci, Di+1})
for i = 1, . . . , n − 1. If Cn is defined and positive then it is called a hyperresolvent of
S. The corresponding set of hyperresolvents from a set of clauses C is denoted by %(C).
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The resolution operator for hyperresolution is denoted by RH .

Hence, several ordinary steps of resolution deductions may result in a hyperresolvent.
The completeness of hyperresolution was already shown by J.A. Robinson in his land-
mark paper from 1965. Hyperresolution can also be combinded with other resolution
refinements (e.g. Atom Ordering and Lock Resolution). We give an example of a hyper-
resolvent given by Prof. Leitsch in his paper. Let C = {C1, C2, C3, C4} where

C1 = ` p(a, b)
C2 = ` p(b, a)

C3 = p(x, y), p(y, z) ` p(x, z)
C4 = p(a, a) `

Consider the following resolution refutation:

` p(a, b)
` p(b, a) p(x, y), p(y, z) ` p(x, z)

p(x, b) ` p(x, a)

` p(a, a) p(a, a) `
`

We have that S = (C3;C1, C2) is a clash-sequence (note that C1 and C2 are positive).
Furthermore, ` p(a, a) constitutes a hyperresolvent of S. 4
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