1) Prove that if Σ is correct and $\overline{\mathbf{P}}^{*}$ is expressible, then Σ is Gödel-incomplete.

Since \bar{P}^{*} is expressible in Σ there must be some predicate $H \in \mathcal{H}$ such that $n \in \bar{P}^{*} \Longleftrightarrow H(n) \in \mathcal{T}$ holds $\forall n \in \mathcal{N}$. Let h be the Gödel number of H, i.e. $h=\ulcorner H\urcorner$, and let sentence $G \in \mathcal{S}$ be the diagonalization of H, i.e. $G=H(h)$. By definition of \bar{P}^{*}, we have $n \in \bar{P}^{*} \Longleftrightarrow\left\ulcorner E_{n}(n)\right\urcorner \in \bar{P} \quad \forall n \in \mathcal{N}$, and therefore, $h \in \bar{P}^{*} \Longleftrightarrow\ulcorner H(h)\urcorner \in \bar{P} \Longleftrightarrow\ulcorner G\urcorner \in \bar{P} \Longleftrightarrow\ulcorner G\urcorner \notin P \Longleftrightarrow G \notin \mathcal{P}$. Since H expresses \bar{P}^{*}, we also have $h \in \bar{P}^{*} \Longleftrightarrow H(h) \in \mathcal{T} \Longleftrightarrow G \in \mathcal{T}$. It follows that G is a Gödel sentence for \bar{P} and $G \notin \mathcal{P} \Longleftrightarrow G \in \mathcal{T}$ must hold. Assume $G \notin \mathcal{T}$, then $G \in P$ which is a contradiction since Σ is correct and therefore $P \subseteq T$ must hold. Hence, $G \in \mathcal{T}$ and $G \notin \mathcal{P}$. Assume $G \in \mathcal{R}$, then since Σ is correct and therefore consistent, it follows that $G \notin \mathcal{T}$ which is a contradiction. Hence, $G \notin \mathcal{R}$ and therefore G is undecidable in Σ and Σ is Gödel-incomplete.

2) Prove that if Σ is consistent and R^{*} is representable ${ }^{1}$, then Σ is Gödel-incomplete.

Since R^{*} is representable in Σ there must be some predicate $H \in \mathcal{H}$ such that $H(n) \in \mathcal{P} \Longleftrightarrow n \in R^{*}$ holds $\forall n \in \mathcal{N}$. It follows that $H(n) \in \mathcal{P} \Longleftrightarrow n \in R^{*} \Longleftrightarrow\left\ulcorner E_{n}(n)\right\urcorner \in R \Longleftrightarrow E_{n}(n) \in \mathcal{R}$ holds $\forall n \in \mathcal{N}$, therefore $H(n) \in \mathcal{P} \Longleftrightarrow E_{n}(n) \in \mathcal{R}$ also holds for $n=\ulcorner H\urcorner=h$. Hence, $H(h) \in \mathcal{P} \Longleftrightarrow E_{\ulcorner H\urcorner}(h) \in \mathcal{R} \Longleftrightarrow H(h) \in \mathcal{R}$ holds. Assume that $H(h) \in \mathcal{P}$, then also $H(h) \in \mathcal{R}$, which is a contradiction since Σ is consistent and $\mathcal{P} \cap \mathcal{R}=\emptyset$ must hold. Therefore, $H(h) \notin \mathcal{P}$ and $H(h) \notin \mathcal{R}$, therefore $H(h)$ is undecidable in Σ and Σ is Gödel-incomplete.

3) Prove that $\overline{\mathrm{P}}^{*}$ is not representable in any system Σ.

Assume that there is a system Σ where \bar{P}^{*} is representable, then by definition there must be some predicate $H \in \mathcal{H}$ such that $H(n) \in \mathcal{P} \Longleftrightarrow n \in \bar{P}^{*}$ holds $\forall n \in \mathcal{N}$. It follows that $H(n) \in \mathcal{P} \Longleftrightarrow n \in \bar{P}^{*} \Longleftrightarrow$ $\left\ulcorner E_{n}(n)\right\urcorner \in \bar{P} \Longleftrightarrow\left\ulcorner E_{n}(n)\right\urcorner \notin P \Longleftrightarrow E_{n}(n) \notin \mathcal{P}$ holds $\forall n \in \mathcal{N}$, therefore $H(n) \in \mathcal{P} \Longleftrightarrow E_{n}(n) \notin \mathcal{P}$ has to hold also for $n=\ulcorner H\urcorner=h$. However, $H(h) \in \mathcal{P} \Longleftrightarrow E_{\ulcorner H\urcorner}(h) \notin \mathcal{P} \Longleftrightarrow H(h) \notin \mathcal{P}$ is a contradiction, therefore \bar{P}^{*} cannot be representable in any system Σ.

[^0]
[^0]: ${ }^{1} R=\{\ulcorner S\urcorner \mid S \in \mathcal{R}\}$

