VU Logic and Computation Exercises: Classical Logic

Agata Ciabattoni

November 1, 2013

Preliminary information

- I expect individual solutions (no group work)
- The exercises should be written in Latex (preferred) or Word
- The (fix!) deadline for the submission is November 262013 (12:00)
- The exercises should be given to me (hard copy, after the class on November 26th) and sent via email (.pdf format) to
agata@logic.at
- In case you cannot bring the exercises after the class, you can send them via email by the same date/time (an acknowledgment will be sent after the receipt of your email)

Exercises

1. (a) Formalize the following sentence in classical logic

There is a person that if he votes for X then everybody votes for X
(b) exhibit a natural deduction derivation for the resulting formula (in case it is valid) or an interpretation that falsifies it (in case it is not valid).
2. For each of the following statements provide either a proof ${ }^{1}$ (if the statement holds) or a counterexample (if the statement does not hold)

- $\forall x P(x) \rightarrow \forall x Q(x) \models \forall x(P(x) \rightarrow Q(x))$
- $\forall x(P(x) \leftrightarrow Q(x))) \models \exists x P(x) \leftrightarrow \exists x Q(x)$
(where the notation $X \leftrightarrow Y$ abbreviates $(X \rightarrow Y) \wedge(Y \rightarrow X)$).

3. Consider the formula

$$
\forall x \exists y A(x, y) \wedge \forall x \neg A(x, x) \wedge \forall x y z[(A(x, y) \wedge A(y, z)) \rightarrow A(x, z)]
$$

- Is the formula satisfiable, unsatisfiable or valid?
- Is the formula satisfiable in interpretations with finite domains?

4. Let us denote by pLJ^{+}the sequent calculus pLJ (see the Appendix) extended with the axiom (schema) $\vdash A \vee \neg A$. (a) Is the sequent $\vdash \neg \neg A \rightarrow A$ derivable in pLJ^{+}? (in the affirmative case show the derivation). (b) Is $\vdash \neg \neg A \rightarrow A$ derivable in pLJ^{+}without using the (cut) rule? (Explain)
5. Exhibit a formula that is satisfiable in all and only the interpretations having k elements $(k>2)$ in their domains.
[^0]
Appendix: Sequent Calculus pLJ

Axioms and cut:
$A \vdash A \quad \frac{\Gamma \vdash A \quad \Sigma, A \vdash B}{\Gamma, \Sigma \vdash B}$ (CUT)
Structural Rules:

$$
\begin{aligned}
\left.\frac{\Gamma, B, A, \Delta \vdash C}{\Gamma, A, B, \Delta \vdash C} \text { (exchange, } 1\right) \quad \frac{\Gamma, A, A, \Delta \vdash C}{\Gamma, A, \Delta \vdash C}(\text { contraction,l) } \\
\frac{\Gamma \vdash B}{\Gamma, A \vdash B} \\
\text { (weakening, } \left.1 \text {) } \quad \frac{\Gamma \vdash}{\Gamma \vdash B} \text { (weakening, } \mathrm{r}\right)
\end{aligned}
$$

Logical Rules:

$$
\begin{array}{cc}
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \vee B \vdash C}(\vee, l) & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}}(\vee, r)_{i} \\
\frac{\Gamma, A_{i} \vdash C}{\Gamma, A_{1} \wedge A_{2} \vdash C}(\wedge, l)_{i} & \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge, r) \\
\frac{\Gamma, B \vdash C \quad \Gamma \vdash A}{\Gamma, A \rightarrow B \vdash C}(\rightarrow, l) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}(\rightarrow, r) \\
\frac{\Gamma \vdash A}{\Gamma, \neg A \vdash}(\neg, l) & \frac{\Gamma, A \vdash}{\Gamma \vdash \neg A}(\neg, r)
\end{array}
$$

[^0]: ${ }^{1}$ Using the proof theoretic or the model theoretic approach.

