Solutions of the Exercises

Logic

1. (a) (1 point) Formalize the following sentence in classical logic

There is a person that if he votes for X then everybody votes for X
(b) (2 points) exhibit a natural deduction derivation for the resulting formula (in case it is valid) or an interpretation that falsifies it (in case it is not valid).

$$
\begin{aligned}
& \exists x(V(x) \rightarrow \forall y V(y)) \\
& \star \frac{\frac{\diamond^{[\neg V(x)] \quad[V(x)]}}{\frac{\perp}{\forall y V(y)}}}{\frac{\frac{[\neg \exists x(V(x) \rightarrow \forall y V(y)}{\exists x(V(x) \rightarrow \forall y V(y))}}{\diamond \frac{\perp}{V(x)}}} * \\
& \perp \\
& \overline{\exists x(V(x) \rightarrow \forall y V(y))}
\end{aligned}
$$

Most common mistakes:
(a) $\exists x V(x) \rightarrow \forall y V(y)$
(b) eigenvariable condition for $(\forall i)$
2. (0,5 point) For each of the following statements provide either a proof (if the statement holds) or a counterexample (if the statement does not hold)

- $\forall x P(x) \rightarrow \forall x Q(x) \models \forall x(P(x) \rightarrow Q(x))$
- $\forall x(P(x) \leftrightarrow Q(x))) \models \exists x P(x) \leftrightarrow \exists x Q(x)$
(where the notation $X \leftrightarrow \underline{Y}$ abbreviates $(X \rightarrow \underline{Y}) \wedge(Y \rightarrow \underline{X})$).
Most students did it right. Sketch of solution:
- Easy counterexample: $D_{\mathcal{A}}=a, b, P^{\mathcal{A}}(a)=Q^{\mathcal{A}}(b)=1$
- The statement is true (easy proof)

3. (1 point) Consider the formula

- Is the formula satisfiable, unsatisfiable or valid?
- Is the formula satisfiable in interpretations with finite domains?

Sketch of solution:

- The formula is satisfiable. For instance: $D_{\mathcal{A}}=\mathcal{N}, I^{\mathcal{A}}(A)=\{(x, y) \mid$ $x \in \mathcal{N}, x>y\}$
- The formula is not satisfiable in interpretations with finite domains. One possible argument: given any element $a_{i} \in D_{\mathcal{A}}$, there must be a_{j} $(i \neq j)$ s.t. $A^{\mathcal{A}}\left(a_{i}^{\mathcal{A}}, a_{j}^{\mathcal{A}}\right)$ holds. The same for a_{j} and, as $A^{\mathcal{A}}\left(a_{j}^{\mathcal{A}}, a_{i}^{\mathcal{A}}\right)$ cannot hold (by transitivity and irreflexivity), there must be a new element $a_{k} \in D_{\mathcal{A}}$, and so on ...

4. (0,5 points) Let us denote by pLJ^{+}the sequent calculus pLJ extended with the axiom (schema) $\vdash \underline{A} \vee \neg A$. (a) Is the sequent $\vdash \neg \neg A \rightarrow \underline{A}$ derivable in $\mathrm{pLJ}^{ \pm}$? (in the affirmative case show the derivation). (b) Is $\vdash \neg \neg A \rightarrow \underline{A}$ derivable in pLJ^{+}without using the (cut) rule? (Explain)

Sketch of solution:

- easy derivation in pLJ^{+}using (cut)
- No. Trying to find a proof (bottom up) of the sequent $\vdash \neg \neg A \rightarrow A$ the only rules that can be applied to $\neg \neg A \vdash A$ are weakening right, left or contraction left. None leads to a derivation. The claim follows by the cut-elimination theorem (that holds in LJ)

Most common mistake: prove $\vdash \neg \neg A \rightarrow A$ without using (cut), by applying the (\neg, l) rule of LK, which leads to a sequent $\vdash \neg A, A$ that is not allowed in $\mathrm{pLJ}^{+}!!!!$
5. (1 point) Exhibit a formula that is satisfiable in all and only the interpretations having \underline{k} elements $(k \geq 2)$ in their domains.

Solution
Let $\exists^{\geq n}$ be the formula

$$
\exists x_{1} \ldots x_{n} \bigwedge_{i \neq j} \neg\left(x_{i}=x_{j}\right)
$$

The required formula is

$$
\exists \geq n \wedge \neg \exists \geq n+1
$$

(other formulas are possible)

Computability

1. (3 points) Are the following sets
(a) $\left\{i \backslash \exists n, \Phi_{i}(n) \downarrow\right.$ and $\left.\Phi_{i}(n+1) \downarrow\right\}$
(b) $\left\{i \downarrow \operatorname{Dom}\left(\Phi_{i}\right) \cap \operatorname{Dom}\left(\Phi_{\underline{a}}\right)=\emptyset\right\}$ in case $\operatorname{Dom}\left(\Phi_{\underline{a}}\right) \neq \emptyset$
(c) $\left\{i \downarrow \operatorname{Dom}\left(\Phi_{i}\right) \cap \operatorname{Dom}\left(\Phi_{\underline{a}}\right)=\emptyset\right\}$ in case $\operatorname{Dom}\left(\Phi_{\underline{a}}\right)=\emptyset$
recursive, r.e. or none of them? (Prove your claims)

Sketch of solutions:

- Not recursive (show that the set is $\neq \emptyset$ and $\neq \mathcal{N}$ and use Rice's theorem), recursively enumerable (use the dovetailing technique)
- Not recursive (use Rice's theorem), not recursively enumerable (use Post's theorem after having shown, using the dovetailing technique, that the complementar set is recursively enumerable)
- Recursive (the set is equal to \mathcal{N})

2. (1 point) Prove that there is an index p such that $\Phi_{p}(0)=p^{2}$?

Sketch of solution:
(very similar to the example in p. 18, computability slide nr. 4)
use the auxiliary function

$$
f(x, y)=x^{2}
$$

the smn theorem and the fixed point theorem.
3. (1 point) Exhibit a lambda term which simulates the boolean function $" \leftrightarrow "$ (i.e. $\underline{A} \leftrightarrow \underline{B}$ is true if and only if either $\underline{A} \equiv \underline{B} \equiv \mathbf{T}$ or $\underline{A} \equiv \underline{B} \equiv \mathbf{F}$) (hint: encode true \mathbf{T} by $\underline{\lambda x y . x}$ and false \mathbf{F} by $\underline{\lambda} x y . \underline{y}$)

Solution: various possibilities. For instance
$\lambda x y \cdot x y(y \mathbf{F T})$

