Exercise IC1 Prove that, if Σ is correct and \overline{P}^* is expressible, then Σ is Gödel-incomplete.

If \overline{P}^* is expressible, then there must be a predicate $H \in \mathcal{H}$ s.t. $n \in \overline{P}^* \iff H(n) \in \mathcal{T}$ for all $n \in \mathcal{N}$. Now, let $h = \lceil H \rceil$ and G be the diagonalization of H, i.e. G = H(h). By the definition of \overline{P}^* , we get $n \in \overline{P}^* \iff \lceil E_n(n) \rceil \in \overline{P}$ for all $n \in \mathcal{N}$. Therefore $h \in \overline{P}^* \iff \lceil H(h) \rceil \in \overline{P} \iff \lceil G \rceil \in \overline{P} \iff \lceil G \rceil \notin P \iff G \notin \mathcal{P}$. Since \overline{P}^* is expressible we have $h \in \overline{P}^* \iff H(h) \in \mathcal{T} \iff G \in \mathcal{T}$, and furthermore $G \in \mathcal{T} \iff G \notin \mathcal{P}$. Since Σ is assumed to be correct it cannot be the case that $G \notin \mathcal{T}$ and $G \in \mathcal{P}$, therefore $G \in \mathcal{T}$ and $G \notin \mathcal{P}$. Moreover, since Σ is correct we have that $G \notin \mathcal{R}$. Hence, $G \notin \mathcal{P}$ and $G \notin \mathcal{R}$, therefore G is undecidable and Σ is Gödel-incomplete.

Exercise IC2 Provide an example of an expressible, but not representable set.

We will consider the set \overline{P}^* , in class we showed that \overline{P}^* is expressible in Formal Arithmetic, and in the following we will show that it is not representable in any system.

Assume \overline{P}^* is representable, then there is a predicate $H \in \mathcal{H}$ s.t. $n \in \overline{P}^* \iff H(n) \in \mathcal{P}$. Additionally, by the definition of \overline{P}^* we get $n \in \overline{P}^* \iff \lceil E_n(n) \rceil \in \overline{P} \iff E_n(n) \notin \mathcal{P}$ for all $n \in \mathcal{N}$. More specifically, it must also hold for $h = \lceil H \rceil$, i.e. $H(h) \in \mathcal{P} \iff E_h(h) \notin \mathcal{P} \iff H(h) \notin \mathcal{P}$, which is a contradiction. Hence, \overline{P}^* is not representable in any system Σ .

Exercise IC3 What follows from the incompleteness theorems about the provability of partial correctness assertions? What if A, B, and/or π are trivial? Provide concrete examples and explain!

Consider the partial correctness assertions $\{true\}skip\{A\}$ and $\{A\}skip\{false\}$. Both assertions only depend on A, i.e. proving those assertions would give us a decision procedure for A. This contradicts the Incompleteness Theorem.