VU Logic and Computation Exercises: Classical Logic

Agata Ciabattoni

November 4, 2014

Preliminary information

- I expect individual solutions (no group work)
- The exercises should be written in Latex (preferred) or Word
- The (fixed!) deadline for the submission is Friday November 282014 (16:00)
- The exercises should be sent via email (.pdf format) to
agata@logic.at
- an acknowledgement of receipt will be sent after the submission (no acknowledgemnt means no receipt)
- Suggestion: do not try to solve the exercises short before the deadline (and do not ask for any explanation on the exercises November 27th or November 28th)

Exercises

The exercise (*) is optional.

1. For each of the following statements provide either a proof ${ }^{1}$ (if the statement holds in classical logic) or a formal counterexample (if the statement does not hold in classical logic):

$$
\begin{aligned}
& 1.1 \models \exists x(\exists y A(y) \rightarrow A(x)) \\
& 1.2 \exists x(B(x) \rightarrow \forall y B(y)) \models \neg \neg \exists x B(x)
\end{aligned}
$$

2. Consider the sequent calculus obtained by adding the axiom

$$
\vdash(\neg A \rightarrow A) \rightarrow A
$$

to the sequent calculus LJ (including $(C U T)$) for propositional intuitionistic logic.
2.1 Exhibit a formula that can be derived in this calculus and that cannot be derived without using the $(C U T)$ rule.
$2.2(*)$ Is LJ extended with $\vdash(\neg A \rightarrow A) \rightarrow A$ a calculus for propositional classical logic? Motivate your answer.
3. A graph is 5 -colorable if there is a way of coloring its vertices with one of the 5 colours such that no two adjacent vertices share the same color.
3.1 Let G be a graph. Define a set Σ of formulas which has a model if and only if G is 5 -colorable.
3.2 Let G^{\prime} be an infinite graph. Knowing that every finite subgraph $G_{0} \subset$ G^{\prime} is 5 -colorable can we conclude that G^{\prime} is 5 -colorable? Motivate your answer.
(Hint for the formalization: you can use propositional logic and consider atoms: color $r_{i, j}$ and $e d g e_{k, l}$ for each vertex v_{i}, v_{k}, v_{l} and color j)

[^0]
Appendix: Sequent Calculus LJ

Axioms and cut:
$A \vdash A \quad \frac{\Gamma \vdash A \quad \Sigma, A \vdash B}{\Gamma, \Sigma \vdash B}$ (CUT)
Structural Rules:

$$
\begin{aligned}
\frac{\Gamma, B, A, \Delta \vdash C}{\Gamma, A, B, \Delta \vdash C}(\text { exchange, } \mathrm{l}) & \frac{\Gamma, A, A, \Delta \vdash C}{\Gamma, A, \Delta \vdash C}(\text { contraction,l) } \\
\frac{\Gamma \vdash B}{\Gamma, A \vdash B} & \text { (weakening,l) } \quad \frac{\Gamma \vdash}{\Gamma \vdash B}
\end{aligned}
$$

Logical Rules:

$$
\begin{array}{cc}
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \vee B \vdash C}(\vee, l) & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}}(\vee, r)_{i \in\{1,2\}} \\
\frac{\Gamma, A_{i} \vdash C}{\Gamma, A_{1} \wedge A_{2} \vdash C}(\wedge, l)_{i \in\{1,2\}} & \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge, r) \\
\frac{\Gamma, B \vdash C \quad \Gamma \vdash A}{\Gamma, A \rightarrow B \vdash C}(\rightarrow, l) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}(\rightarrow, r) \\
\frac{\Gamma \vdash A}{\Gamma, \neg A \vdash}(\neg, l) & \frac{\Gamma, A \vdash}{\Gamma \vdash \neg A}(\neg, r)
\end{array}
$$

[^0]: ${ }^{1}$ Using the proof theoretic or the model theoretic approach.

