Exercise ML2 For each of the following schematic formulas, show that they are valid in \mathcal{F} and provide concrete counter-examples that show that removal of some accessibilities leads to invalidity:

 $\Box(A \supset A)$

Since $A \supset A$ is a classical tautology, it holds in every world, and therefore $\Box(A \supset A)$ holds in every world as well. Furthermore, the removal of some accessibilities does not yield invalidity.

 $\Diamond \Diamond A \supset \Diamond A$

Let $x \in \{w, u\}$ be an arbitrary world and A an arbitrary formula, and suppose $\mathcal{M}, x \models \Diamond \Diamond A$. Then, there exists a world $y \in \{w, u\}$ s.t. xRy and $\mathcal{M}, y \models \Diamond A$, moreover there must be a world $z \in \{w, u\}$ s.t. yRz and $\mathcal{M}, z \models A$. Since \mathcal{F} is transitive, xRz must hold as well, and therefore $\mathcal{M}, x \models \Diamond A$, and $\mathcal{M}, x \models \Diamond \Diamond A \supset \Diamond A$. We can conclude $\mathcal{F} \models \Diamond \Diamond A \supset \Diamond A$.

The removal of wRw yields invalidity. Consider a model \mathcal{M} based on \mathcal{F} s.t. $v_{\mathcal{M}}(p,w) = \mathbf{1}$ and $v_{\mathcal{M}}(p,u) = \mathbf{0}$. Then $\mathcal{M}, w \models \Diamond \Diamond p$ holds, but $\mathcal{M}, w \not\models \Diamond p$. Therefore $\mathcal{M}, w \not\models \Diamond \Diamond p \supset \Diamond p$ and $\mathcal{F} \not\models \Diamond \Diamond p \supset \Diamond p$.

 $A\supset \Box\Diamond A$

Let $x \in \{w, u\}$ be an arbitrary world and A an arbitrary formula, and suppose $\mathcal{M}, x \models A$. Since \mathcal{F} is symmetric we have $\mathcal{M}, y \models \Diamond A$ for each world $y \in \{w, u\}$ s.t. xRy. Therefore we have $\mathcal{M}, x \models \Box \Diamond A$ and $\mathcal{M}, x \models A \supset \Box \Diamond A$. We can conclude $\mathcal{F} \models A \supset \Box \Diamond A$.

The removal of uRw yields invalidity. Consider a model \mathcal{M} based on \mathcal{F} s.t. $v_{\mathcal{M}}(p,w) = \mathbf{1}$ and $v_{\mathcal{M}}(p,u) = \mathbf{0}$. Then $\mathcal{M}, w \models p$ holds, and $\mathcal{M}, u \not\models \Diamond p$. Therefore $\mathcal{M}, w \not\models \Box \Diamond p$ and $\mathcal{M}, w \not\models p \supset \Box \Diamond p$. Moreover $\mathcal{F} \not\models p \supset \Box \Diamond p$.

Exercise ML3 Show that the intersection of two logics is also a logic. What about unions of logics? (Prove or refute!)

Let $\mathcal{L}_1, \mathcal{L}_2$ be arbitrary logics and $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$ the intersection of them. Furthermore, let $F, F \supset G \in \mathcal{L}$. Hence, $F, F \supset G \in \mathcal{L}_1$ and $F, F \supset G \in \mathcal{L}_2$. Since \mathcal{L}_1 and \mathcal{L}_2 are closed under *modus ponens*, we have $G \in \mathcal{L}_1, G \in \mathcal{L}_2$, and therefore $G \in \mathcal{L}$. In conclusion, if $F, F \supset G \in \mathcal{L}$ then $G \in \mathcal{L}$, therefore \mathcal{L} is closed under *modus ponens*.

Let $F \in \mathcal{L}$ be an arbitrary formula, π an arbitrary substitution $(PV_{\mathcal{L}} \mapsto FORM_{\mathcal{L}})$ and $F[\pi]$ the formula resulting from F by applying π . Since \mathcal{L}_1 and \mathcal{L}_2 are closed under substitution, we have $F[\pi] \in \mathcal{L}_1$, $F[\pi] \in \mathcal{L}_2$, and therefore $F[\pi] \in \mathcal{L}$. Hence, we can conclude \mathcal{L} is closed under substitution. Let $\mathcal{L}_1 = \{\bot\}$ and $\mathcal{L}_2 = \{\bot \supset \top\}$. Both, \mathcal{L}_1 and \mathcal{L}_2 , are logics since both are closed under *substitution* and *modus ponens*. However, the union $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 = \{\bot, \bot \supset \top\}$ is not closed under *modus ponens* since $\top \notin \mathcal{L}$, and therefore it is not a logic.

Exercise ML4 Specify a concrete counter-example to $F \supset \Box F$. Is there a frame in which $F \supset \Box F$ is valid? (Prove or refute!)

Let $\mathcal{M} = \langle W, R, V \rangle$ be a model s.t. there are worlds $w, u \in W$ and wRu. Now consider an assignment $v_{\mathcal{M}}(p, w) = \mathbf{1}$ for some $p \in PV$ and $v_{\mathcal{M}}(p, x) = \mathbf{0}$ for all $x \in W$ different from w. Then $\mathcal{M}, w \models p$ and $\mathcal{M}, w \not\models \Box p$, and therefore $\mathcal{M}, w \not\models p \supset \Box p$.

Let $\mathcal{F} = \langle W, \emptyset \rangle$ be a frame. Then, trivially $\mathcal{F} \models F \supset \Box F$ holds, since $\Box F$ holds in every world $w \in W$ and every model \mathcal{M} based on \mathcal{F} .

Exercise 11 Show that formulas 3, 6, 7 and 9 (on slide 8) are BHK-valid.

(3) $(A \land B) \supset (B \land A)$

The procedure $\gamma \triangleright \{(A \land B) \supset (B \land A)\}$ transforms every proof $\rho = \langle \rho_A, \rho_B \rangle$ of $(A \land B)$ into a proof of $(B \land A)$, where ρ_A is a proof of A and ρ_B is a proof of B. The procedure γ can be described as follows:

- 1. extract the first component ρ_A from ρ
- 2. extract the second component ρ_B from ρ
- 3. return $\langle \rho_B, \rho_A \rangle$
- (6) $\perp \supset A$

The procedure $\gamma \triangleright \{ \bot \supset A \}$ takes as input a proof of \bot and returns a proof of A. Trivially, γ transforms any given proof of \bot into a proof of A, since there are no proofs for \bot .

(7) $(A \supset (B \supset C)) \supset ((A \land B) \supset C)$

We define the procedure $\gamma \triangleright \{(A \supset (B \supset C)) \supset ((A \land B) \supset C)\}$ as follows: The input of γ is a procedure $\eta \triangleright \{A \supset (B \supset C)\}$ where the

- input of η is a proof $\delta \triangleright \{A\}$, and the
- output of η is a procedure $\pi \triangleright \{B \supset C\}$.

The output of γ , i.e. the procedure ν – which transforms a proof $\rho = \langle \rho_A, \rho_B \rangle$ into a proof σ of C – can be described as follows:

- 1. extract the first component ρ_A from ρ
- 2. apply η to ρ_A , i.e. compute $\eta(\rho_A)$, we get a proof π of $B \supset C$

- 3. extract the second component ρ_B from ρ
- 4. apply π to ρ_B , i.e. compute $\pi(\rho_B)$, we get a proof σ of C
- 5. return σ

(9) $(A \land (B \lor C)) \supset ((A \land B) \lor (A \land C))$

Consider the procedure $\gamma \triangleright \{(A \land (B \lor C)) \supset ((A \land B) \lor (A \land C))\}$. The input of γ is a proof $\sigma = \langle \alpha, \rho \rangle$ s.t. $\alpha \triangleright \{A\}$ and $\rho = \langle \nu, \rho_0 \rangle \triangleright \{B \lor C\}$. The procedure γ can be described as follows:

- 1. extract the first component i.e. α from σ
- 2. extract the second component i.e. $\rho = \langle \nu, \rho_0 \rangle$ from σ
- 3. extract the first component i.e. ν from ρ
- 4. extract the second component i.e. ρ_0 from ρ
- 5. create the pair $\tau = \langle \alpha, \rho_0 \rangle$
- 6. return the pair $\langle \nu, \tau \rangle$

Exercise AD1 Show the validity of the following formula in LK: $sk(\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)) \rightarrow \forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v).$

$$sk(\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)) = \forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u))$$

$F(a, b, f(a, b), c, g(a, b, c)) \vdash F(a, b, f(a, b), c, g(a, b, c))$
$F(a, b, f(a, b), c, g(a, b, c)) \vdash \exists v F(a, b, f(a, b), c, v) \downarrow I$
$\forall uF(a,b,f(a,b),u,g(a,b,u)) \vdash \exists vF(a,b,f(a,b),c,v) \forall x$
$\forall uF(a,b,f(a,b),u,g(a,b,u)) \vdash \forall u \exists vF(a,b,f(a,b),u,v) \exists x$
$\forall uF(a,b,f(a,b),u,g(a,b,u)) \vdash \exists z \forall u \exists vF(a,b,z,u,v) \downarrow j$
$\forall y \forall u F(a, y, f(a, y), u, g(a, y, u)) \vdash \exists z \forall u \exists v F(a, b, z, u, v) \forall x \in \mathcal{F}_{a, b}$
$\forall y \forall u F(a, y, f(a, y), u, g(a, y, u)) \vdash \forall y \exists z \forall u \exists v F(a, y, z, u, v) \downarrow I$
$ \forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u)) \vdash \forall y \exists z \forall u \exists v F(a, y, z, u, v) \forall x \forall$
$ \overline{ \forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u)) } \vdash \forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v) } \xrightarrow{\forall, \tau} $
$ \qquad \qquad$

Remark: *a*, *b* and *c* are free variables.

Why is the inverse implication not valid?

Assuming $\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)$ holds, then one cannot conclude that $\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u))$ holds for every function f and g. Consider an interpretation $I = (D, \phi, d)$ as counter-example, where

$$D = \{0, 1\}$$

$$\phi(f)(x, y) = 1 \text{ for all } x, y \in D$$

$$\phi(g)(x, y, z) = 1 \text{ for all } x, y, z \in D$$

$$\phi(F)(x, y, z, u, v) = \begin{cases} 1 & \text{if } z = v = 0 \\ 0 & \text{otherwise} \end{cases}$$

Then, $\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)$ evaluates to **1** and $\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u))$ evaluates to **0**. Hence, the inverse implication is not valid.

Exercise AD2 Prove that if $\forall x_1 \cdots \forall x_n F$ is satisfiable, then $\forall x_1 \cdots \forall x_n \delta(F)$ is satisfiable.

By the lemma about the definition we get that $\forall x_1 \cdots \forall x_n (\epsilon(F) \land p_F(x_1, \ldots, x_n))$ is satisfiable iff $\forall x_1 \cdots \forall x_n F$ is satisfiable. It suffices to show that if $\epsilon(F)$ is satisfiable, then $\gamma(F) := \bigwedge_{G \in \Sigma(F)} D_G$ is satisfiable. We will perform an inductive proof on the logical complexity of F.

Basis F is atomic. Then, $\epsilon(F) = E_F$ and E_F has the form $\forall X(p_F(X) \leftrightarrow F)$, by applying equivalence transformations we get

$$\forall X(p_F(X) \leftrightarrow F) \Leftrightarrow \forall X((p_F(X) \to F) \land (F \to p_F(X))) \Leftrightarrow \forall X((\neg p_F(X) \lor F) \land (\neg F \lor p_F(X))) \Leftrightarrow \forall X(\neg p_F(X) \lor F) \land \forall X(\neg F \lor p_F(X)).$$

It is obvious that the last formula is equivalent to D_F . Since $\gamma(F) = D_F$, if $\epsilon(F)$ is satisfiable then $\gamma(F)$ is satisfiable.

Induction hypothesis Assume that, for all H with lc(H) < m, if $\epsilon(H)$ is satisfiable, then $\gamma(H)$ is satisfiable.

Step Consider a formula G with lc(G) = m. We perform a case distinction wrt. the top-level symbol in G.

Case G is of the form $\neg H$. Then, E_G is of the form $\forall X(p_G(X) \leftrightarrow \neg p_H(X))$, by applying equivalence transformations we get

$$\forall X(p_G(X) \leftrightarrow \neg p_H(X))$$

$$\Leftrightarrow \quad \forall X((p_G(X) \rightarrow \neg p_H(X)) \land (\neg p_H(X) \rightarrow p_G(X)))$$

$$\Leftrightarrow \quad \forall X((\neg p_G(X) \lor \neg p_H(X)) \land (p_G(X) \lor p_H(X)))$$

$$\Leftrightarrow \quad \forall X(\neg p_G(X) \lor \neg p_H(X)) \land \forall X(p_G(X) \lor p_H(X)).$$

Thus, E_G is equivalent to D_G and furthermore if E_G is satisfiable then D_G is satisfiable. Hence, by the induction hypothesis, the equivalence of E_G and D_G , and the construction of D_G , we get that if $\epsilon(G)$ is satisfiable, then $\gamma(G)$ is satisfiable.

Case G is of the form $H_1 \wedge H_2$. Then, E_G is of the form $\forall X(p_G(X) \leftrightarrow (p_{H_1}(Y) \wedge p_{H_2}(Z)))$ where $X = Y \cup Z$, by applying equivalence transformations we get

$$\forall X(p_G(X) \leftrightarrow (p_{H_1}(Y) \land p_{H_2}(Z)))$$

$$\Leftrightarrow \quad \forall X((p_G(X) \rightarrow (p_{H_1}(Y) \land p_{H_2}(Z))) \land ((p_{H_1}(Y) \land p_{H_2}(Z)) \rightarrow p_G(X))))$$

$$\Leftrightarrow \quad \forall X((\neg p_G(X) \lor (p_{H_1}(Y) \land p_{H_2}(Z))) \land (\neg (p_{H_1}(Y) \land p_{H_2}(Z)) \lor p_G(X))))$$

$$\Leftrightarrow \quad \forall X((\neg p_G(X) \lor p_{H_1}(Y)) \land (\neg p_G(X) \lor p_{H_2}(Z)) \land (\neg p_{H_1}(Y) \lor \neg p_{H_2}(Z) \lor p_G(X)))$$

$$\Leftrightarrow \quad \forall X(\neg p_G(X) \lor p_{H_1}(Y)) \land \forall X(\neg p_G(X) \lor p_{H_2}(Z)) \land$$

$$\forall X(\neg p_{H_1}(Y) \lor \neg p_{H_2}(Z) \lor p_G(X)).$$

$$(1)$$

Furthermore D_G is of the form

$$\forall X(\neg p_H(X) \lor p_{H_1}(X)) \land \forall X(\neg p_G(X) \lor p_{G_2}(X)) \land \forall X(p_G(X) \lor \neg p_{G_1}(X) \lor \neg p_{G_2}(X)).$$
(2)

It is obvious that (1) is equivalent to (2). Hence, by the induction hypothesis, the equivalence of (1) and (2), and the construction of D_G , we get that if $\epsilon(G)$ is satisfiable, then $\gamma(G)$ is satisfiable.

Case G is of the form $H_1 \circ H_2$ st. $\circ \in \{\lor, \rightarrow\}$. These cases are analogous to the one above.

Case G is of the form $\forall vH$. Then, E_G is of the form $\forall X(p_G(X) \leftrightarrow \forall v \ p_H(X, v))$, by applying equivalences we get

$$\forall X(p_G(X) \leftrightarrow \forall v \ p_H(X, v))$$

$$\Leftrightarrow \forall X((p_G(X) \to \forall v \ p_H(X, v)) \land (\forall v \ p_H(X, v) \to p_G(X)))$$

$$\Leftrightarrow \forall X((\neg p_G(X) \lor \forall v \ p_H(X, v)) \land (\neg \forall v \ p_H(X, v) \lor p_G(X)))$$

$$\Leftrightarrow \forall X((\neg p_G(X) \lor \forall v \ p_H(X, v)) \land (\exists v \ \neg p_H(X, v) \lor p_G(X)))$$

$$\Leftrightarrow \forall X \forall v(\neg p_G(X) \lor p_H(X, v)) \land \forall X (\exists v \ \neg p_H(X, v) \lor p_G(X)))$$

Considering the skolem form of the last formula

 $\forall X \forall v (\neg p_G(X) \lor p_H(X, v)) \land \forall X (\neg p_H(X, f(X)) \lor p_G(X)),$

we obtain a formula which is satisfiable iff E_G is satisfiable. Furthermore it is easy to see that if this skolem form is satisfiable, then so is D_G .

Case G is of the form $\exists vH$. This case is analogous to the one above.

Exercise AD3 Compute $\delta(F)'$ for $F = \exists y(p(x, g(x, y)) \rightarrow \exists z \neg (p(g(x, z), y) \lor p(y, x))).$

$$\begin{array}{lll} D_{\vee}: & \forall xyz(\neg p_{\vee}(x,y,z) \lor p(g(x,z),y) \lor p(y,x)) \land \\ & \forall xyz(p_{\vee}(x,y,z) \lor \neg p(g(x,z),y)) \land \\ & \forall xyz(p_{\vee}(x,y,z) \lor \neg p(y,x)) \\ D_{\neg}: & \forall xyz(\neg p_{\neg}(x,y,z) \lor \neg p_{\vee}(x,y,z)) \land \\ & \forall xyz(p_{\neg}(x,y,z) \lor p_{\vee}(x,y,z)) \\ D_{\exists_{1}}: & \forall xy(\neg p_{\exists_{1}}(x,y) \lor p_{\neg}(x,y,f(x,y))) \land \\ & \forall xy\forall z(p_{\exists_{1}}(x,y) \lor \neg p_{\neg}(x,y,z)) \\ D_{\rightarrow}: & \forall xy(\neg p_{\rightarrow}(x,y) \lor \neg p(x,g(x,y)) \lor p_{\exists_{1}}(x,y)) \land \\ & \forall xy(p_{\rightarrow}(x,y) \lor \neg p_{\exists_{1}}(x,y)) \\ & \forall xy(p_{\rightarrow}(x,y) \lor \neg p_{\exists_{1}}(x,y)) \\ D_{\exists_{2}}: & \forall x(\neg p_{\exists_{2}}(x) \lor p_{\rightarrow}(x,h(x))) \land \end{array}$$

$$\forall x \forall y (p_{\exists_2}(x) \lor \neg p_{\rightarrow}(x,y)) \\ \forall x \forall y (p_{\exists_2}(x) \lor \neg p_{\rightarrow}(x,y))$$

Considering $\delta(F)'$ as a set of clauses we get

$$\{ \neg p_{\vee}(x,y,z) \lor p(g(x,z),y) \lor p(y,x), p_{\vee}(x,y,z) \lor \neg p(g(x,z),y), p_{\vee}(x,y,z) \lor \neg p(y,x), \\ \neg p_{\neg}(x,y,z) \lor \neg p_{\vee}(x,y,z), p_{\neg}(x,y,z) \lor p_{\vee}(x,y,z), \\ \neg p_{\exists_1}(x,y) \lor p_{\neg}(x,y,f(x,y)), p_{\exists_1}(x,y) \lor \neg p_{\neg}(x,y,u), \\ \neg p_{\rightarrow}(x,y) \lor \neg p(x,g(x,y)) \lor p_{\exists_1}(x,y), p_{\rightarrow}(x,y) \lor p(x,g(x,y)), p_{\rightarrow}(x,y) \lor \neg p_{\exists_1}(x,y), \\ \neg p_{\exists_2}(x) \lor p_{\rightarrow}(x,h(x)), p_{\exists_2}(x) \lor \neg p_{\rightarrow}(x,u), p_{\exists_2}(x) \}.$$

Exercise AD4 Find all Robinson-resolvents of $C = p(x, f(x)) \lor p(a, y)$ and $D = \neg p(x, y) \lor \neg p(a, f(x)) \lor \neg p(f(x), f(y))$. Specify all used renamings, mgus and (implicit) factors.

As a first step, we only consider Robinson-resolvents of trivial factors, and we consider the variable disjoint variant $C' = p(u, f(u)) \lor p(a, v)$ with $\nu = \{x \mapsto u, y \mapsto v\}$.

- Resolving upon first literal of C' and first literal of D using mgu $\{x \mapsto u, y \mapsto f(u)\}$ we obtain the resolvent $p(a, v) \lor \neg p(a, f(u)) \lor \neg p(f(u), f(f(u)))$.
- Resolving upon first literal of C' and second literal of D using mgu $\{u \mapsto a, x \mapsto a\}$ we obtain the resolvent $p(a, v) \lor \neg p(a, y) \lor \neg p(f(a), f(y))$.
- Resolving upon first literal of C' and third literal of D using mgu $\{u \mapsto f(x), y \mapsto f(x)\}$ we obtain the resolvent $p(a, v) \vee \neg p(x, f(x)) \vee \neg p(a, f(x))$.
- Resolving upon second literal of C' and first literal of D using mgu $\{x \mapsto a, y \mapsto v\}$ we obtain the resolvent $p(u, f(u)) \lor \neg p(a, f(a)) \lor \neg p(f(a), f(v))$.
- Resolving upon second literal of C' and second literal of D using mgu $\{v \mapsto f(x)\}$ we obtain the resolvent $p(u, f(u)) \lor \neg p(x, y) \lor \neg p(f(x), f(y))$.

In the next step, we consider Robinson-resolvents of non-trivial factors.

- Let C' = p(a, f(a)) be a factor of C by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$. Resolving upon the first literal of C' and the first literal of D using mgu $\{x \mapsto a, y \mapsto f(a)\}$ yields the resolvent $\neg p(a, f(a)) \lor \neg p(f(a), f(f(a)))$.
- Let C' = p(a, f(a)) be a factor of C by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$. Resolving upon the first literal of C' and the second literal of D using mgu $\{x \mapsto a\}$ yields the resolvent $\neg p(a, y) \lor \neg p(f(a), f(y))$.
- Let $D' = \neg p(a, f(a)) \lor \neg p(f(a), f(f(a)))$ be a factor of D by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$. Resolving upon the first literal of C and the first literal of D' using mgu $\{x \mapsto a\}$ yields the resolvent $p(a, y) \lor \neg p(f(a), f(f(a)))$.
- Let D' = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))) be a factor of D by using the mgu {x ↦ a, y ↦ f(a)}. Resolving upon the first literal of C and the second literal of D' using mgu {x ↦ f(a)} yields the resolvent p(a, y) ∨ ¬p(a, f(a)).
- Let $D' = \neg p(a, f(a)) \lor \neg p(f(a), f(f(a)))$ be a factor of D by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$. Resolving upon the second literal of C and the first literal of D' using mgu $\{y \mapsto f(a)\}$ yields the resolvent $p(x, f(x)) \lor \neg p(f(a), f(f(a)))$.
- Let C' = p(a, f(a)) be a factor of C by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$ and $D' = \neg p(a, f(a)) \lor \neg p(f(a), f(f(a)))$ be a factor of D by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$. We can immediately resolve upon the first literal of C' and the first literal of D' and we obtain the resolvent $\neg p(f(a), f(f(a)))$.

Exercise AD5 Describe another resolution refinement (other than ordered resolution) in detail. (You do not have to give a completeness proof).

In the following, we will consider *hyperresolution* as a resolution refinement. The desription is based on the paper about *Resolution Theorem Proving*¹, especially the definition and the example are taken from this work.

Hyperresolution is the deduction principle where only positive clauses and the empty clause are derivable. A clause is called *positive* if it is of the form $\vdash A_1, \ldots, A_n$, where A_1, \ldots, A_n are atoms. The derivation of just positive clauses is only possible if we use many-step instead of one-step inferences.

Definition 1. Let C be a nonpositive clause and D_1, \ldots, D_n be positive clauses; then $S: (C; D_1, \ldots, D_n)$ is called a clash sequence. Let $C_0 = 0$ and $C_i + 1 \in \mathcal{R}es(\{C_i, D_{i+1}\})$ for $i = 1, \ldots, n-1$. If C_n is defined and positive then it is called a hyperresolvent of S.

Remark. $\mathcal{R}es(\mathcal{C})$ denotes the set of resolvents definable from a set of clauses \mathcal{C} .

Example 1. Let $C = \{C_1, C_2, C_3, C_4\}$ be a set of clauses where

$$C1 = \vdash p(a, b)$$

$$C2 = \vdash p(b, a)$$

$$C3 = p(x, y), p(y, z) \vdash p(x, z)$$

$$C4 = p(a, a) \vdash .$$

We can construct a refutation of C:

Note that $\vdash p(a, a)$ is a hyperresolvent of the clash sequence $(C_3; C_1, C_2)$.

¹Alexander Leitsch, http://www.logic.at/staff/leitsch/httpd/resolv.pdf