## Exercises Block 2

January 13, 2015

Exercise ML2 For each of the following schematic formulas, show that they are valid in $\mathcal{F}$ and provide concrete counter-examples that show that removal of some accessibilities leads to invalidity:

Since $A \supset A$ is a classical tautology, it holds in every world, and therefore $\square(A \supset A)$ holds in every world as well. Furthermore, the removal of some accessibilities does not yield invalidity.
$\diamond \diamond A \supset \diamond A$
Let $x \in\{w, u\}$ be an arbitrary world and $A$ an arbitrary formula, and suppose $\mathcal{M}, x \models \diamond \diamond A$. Then, there exists a world $y \in\{w, u\}$ s.t. $x R y$ and $\mathcal{M}, y \models$ $\diamond A$, moreover there must be a world $z \in\{w, u\}$ s.t. $y R z$ and $\mathcal{M}, z \models A$. Since $\mathcal{F}$ is transitive, $x R z$ must hold as well, and therefore $\mathcal{M}, x \models \diamond A$, and $\mathcal{M}, x \models \diamond \diamond A \supset \diamond A$. We can conclude $\mathcal{F} \models \diamond \diamond A \supset \diamond A$.
The removal of $w R w$ yields invalidity. Consider a model $\mathcal{M}$ based on $\mathcal{F}$ s.t. $v_{\mathcal{M}}(p, w)=\mathbf{1}$ and $v_{\mathcal{M}}(p, u)=\mathbf{0}$. Then $\mathcal{M}, w \models \diamond \diamond p$ holds, but $\mathcal{M}, w \not \vDash \diamond p$. Therefore $\mathcal{M}, w \not \vDash \diamond \diamond p \supset \diamond p$ and $\mathcal{F} \not \vDash \diamond \diamond p \supset \diamond p$.
$A \supset \square \diamond A$
Let $x \in\{w, u\}$ be an arbitrary world and $A$ an arbitrary formula, and suppose $\mathcal{M}, x \vDash A$. Since $\mathcal{F}$ is symmetric we have $\mathcal{M}, y \models \diamond A$ for each world $y \in\{w, u\}$ s.t. $x R y$. Therefore we have $\mathcal{M}, x \models \square \diamond A$ and $\mathcal{M}, x \models A \supset \square \diamond A$. We can conclude $\mathcal{F} \models A \supset \square \diamond A$.
The removal of $u R w$ yields invalidity. Consider a model $\mathcal{M}$ based on $\mathcal{F}$ s.t. $v_{\mathcal{M}}(p, w)=\mathbf{1}$ and $v_{\mathcal{M}}(p, u)=\mathbf{0}$. Then $\mathcal{M}, w \models p$ holds, and $\mathcal{M}, u \not \vDash \Delta p$. Therefore $\mathcal{M}, w \not \vDash \square \diamond p$ and $\mathcal{M}, w \not \vDash p \supset \square \diamond p$. Moreover $\mathcal{F} \not \vDash p \supset \square \diamond p$.

Exercise ML3 Show that the intersection of two logics is also a logic. What about unions of logics? (Prove or refute!)

Let $\mathcal{L}_{1}, \mathcal{L}_{2}$ be arbitrary logics and $\mathcal{L}=\mathcal{L}_{1} \cap \mathcal{L}_{2}$ the intersection of them. Furthermore, let $F, F \supset G \in \mathcal{L}$. Hence, $F, F \supset G \in \mathcal{L}_{1}$ and $F, F \supset G \in \mathcal{L}_{2}$. Since $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ are closed under modus ponens, we have $G \in \mathcal{L}_{1}, G \in \mathcal{L}_{2}$, and therefore $G \in \mathcal{L}$. In conclusion, if $F, F \supset G \in \mathcal{L}$ then $G \in \mathcal{L}$, therefore $\mathcal{L}$ is closed under modus ponens.

Let $F \in \mathcal{L}$ be an arbitrary formula, $\pi$ an arbitrary substitution $\left(P V_{\mathcal{L}} \mapsto F O R M_{\mathcal{L}}\right)$ and $F[\pi]$ the formula resulting from $F$ by applying $\pi$. Since $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ are closed under substitution, we have $F[\pi] \in \mathcal{L}_{1}, F[\pi] \in \mathcal{L}_{2}$, and therefore $F[\pi] \in \mathcal{L}$. Hence, we can conclude $\mathcal{L}$ is closed under substitution.

Let $\mathcal{L}_{1}=\{\perp\}$ and $\mathcal{L}_{2}=\{\perp \supset \top\}$. Both, $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$, are logics since both are closed under substitution and modus ponens. However, the union $\mathcal{L}=\mathcal{L}_{1} \cup \mathcal{L}_{2}=\{\perp, \perp \supset \top\}$ is not closed under modus ponens since $\top \notin \mathcal{L}$, and therefore it is not a logic.

Exercise ML4 Specify a concrete counter-example to $F \supset \square F$. Is there a frame in which $F \supset \square F$ is valid? (Prove or refute!)

Let $\mathcal{M}=\langle W, R, V\rangle$ be a model s.t. there are worlds $w, u \in W$ and $w R u$. Now consider an assignment $v_{\mathcal{M}}(p, w)=\mathbf{1}$ for some $p \in P V$ and $v_{\mathcal{M}}(p, x)=\mathbf{0}$ for all $x \in W$ different from $w$. Then $\mathcal{M}, w \vDash p$ and $\mathcal{M}, w \not \vDash \square p$, and therefore $\mathcal{M}, w \not \vDash p \supset \square p$.

Let $\mathcal{F}=\langle W, \emptyset\rangle$ be a frame. Then, trivially $\mathcal{F} \models F \supset \square F$ holds, since $\square F$ holds in every world $w \in W$ and every model $\mathcal{M}$ based on $\mathcal{F}$.

Exercise I1 Show that formulas 3, 6, 7 and 9 (on slide 8) are BHK-valid.
(3) $(A \wedge B) \supset(B \wedge A)$

The procedure $\gamma \triangleright\{(A \wedge B) \supset(B \wedge A)\}$ transforms every proof $\rho=\left\langle\rho_{A}, \rho_{B}\right\rangle$ of $(A \wedge B)$ into a proof of $(B \wedge A)$, where $\rho_{A}$ is a proof of $A$ and $\rho_{B}$ is a proof of $B$. The procedure $\gamma$ can be described as follows:

1. extract the first component $\rho_{A}$ from $\rho$
2. extract the second component $\rho_{B}$ from $\rho$
3. return $\left\langle\rho_{B}, \rho_{A}\right\rangle$
(6) $\perp \supset A$

The procedure $\gamma \triangleright\{\perp \supset A\}$ takes as input a proof of $\perp$ and returns a proof of $A$. Trivially, $\gamma$ transforms any given proof of $\perp$ into a proof of $A$, since there are no proofs for $\perp$.
(7) $(A \supset(B \supset C)) \supset((A \wedge B) \supset C)$

We define the procedure $\gamma \triangleright\{(A \supset(B \supset C)) \supset((A \wedge B) \supset C)\}$ as follows: The input of $\gamma$ is a procedure $\eta \triangleright\{A \supset(B \supset C)\}$ where the

- input of $\eta$ is a proof $\delta \triangleright\{A\}$, and the
- output of $\eta$ is a procedure $\pi \triangleright\{B \supset C\}$.

The output of $\gamma$, i.e. the procedure $\nu$ - which transforms a proof $\rho=\left\langle\rho_{A}, \rho_{B}\right\rangle$ into a proof $\sigma$ of $C$ - can be described as follows:

1. extract the first component $\rho_{A}$ from $\rho$
2. apply $\eta$ to $\rho_{A}$, i.e. compute $\eta\left(\rho_{A}\right)$, we get a proof $\pi$ of $B \supset C$
3. extract the second component $\rho_{B}$ from $\rho$
4. apply $\pi$ to $\rho_{B}$, i.e. compute $\pi\left(\rho_{B}\right)$, we get a proof $\sigma$ of $C$
5. return $\sigma$
(9) $(A \wedge(B \vee C)) \supset((A \wedge B) \vee(A \wedge C))$

Consider the procedure $\gamma \triangleright\{(A \wedge(B \vee C)) \supset((A \wedge B) \vee(A \wedge C))\}$. The input of $\gamma$ is a proof $\sigma=\langle\alpha, \rho\rangle$ s.t. $\alpha \triangleright\{A\}$ and $\rho=\left\langle\nu, \rho_{0}\right\rangle \triangleright\{B \vee C\}$. The procedure $\gamma$ can be described as follows:

1. extract the first component - i.e. $\alpha-$ from $\sigma$
2. extract the second component - i.e. $\rho=\left\langle\nu, \rho_{0}\right\rangle$ - from $\sigma$
3. extract the first component - i.e. $\nu$ - from $\rho$
4. extract the second component - i.e. $\rho_{0}-$ from $\rho$
5. create the pair $\tau=\left\langle\alpha, \rho_{0}\right\rangle$
6. return the pair $\langle\nu, \tau\rangle$

Exercise AD1 Show the validity of the following formula in $L K: s k(\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)) \rightarrow$ $\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)$.

$$
\begin{gathered}
s k(\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v))=\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u)) \\
\frac{F(a, b, f(a, b), c, g(a, b, c)) \vdash F(a, b, f(a, b), c, g(a, b, c))}{F(a, b, f(a, b), c, g(a, b, c)) \vdash \exists v F(a, b, f(a, b), c, v)} \forall, r \\
\frac{\forall u F(a, b, f(a, b), u, g(a, b, u)) \vdash \exists v F(a, b, f(a, b), c, v)}{\frac{\forall u F(a, b, f(a, b), u, g(a, b, u)) \vdash \forall u \exists v F(a, b, f(a, b), u, v)}{\forall u F(a, b, f(a, b), u, g(a, b, u)) \vdash \exists z \forall u \exists v F(a, b, z, u, v)} \forall, r} \nexists, l \\
\frac{\forall y \forall u F(a, y, f(a, y), u, g(a, y, u)) \vdash \exists z \forall u \exists v F(a, b, z, u, v)}{\forall} \forall, r \\
\frac{\forall y \forall u F(a, y, f(a, y), u, g(a, y, u)) \vdash \forall y \exists z \forall u \exists v F(a, y, z, u, v)}{\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u)) \vdash \forall y \exists z \forall u \exists v F(a, y, z, u, v)} \forall, l \\
\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u)) \vdash \forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v) \\
\hline \vdash, r \\
\vdash x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u)) \rightarrow \forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)
\end{gathered}, r,
$$

Remark: $a, b$ and $c$ are free variables.

Why is the inverse implication not valid?
Assuming $\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)$ holds, then one cannot conclude that $\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u))$ holds for every function $f$ and $g$. Consider an interpretation $I=(D, \phi, d)$ as counter-example, where

$$
\begin{aligned}
D & =\{0,1\} \\
\phi(f)(x, y) & =1 \text { for all } x, y \in D \\
\phi(g)(x, y, z) & =1 \text { for all } x, y, z \in D \\
\phi(F)(x, y, z, u, v) & = \begin{cases}1 & \text { if } z=v=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then, $\forall x \forall y \exists z \forall u \exists v F(x, y, z, u, v)$ evaluates to $\mathbf{1}$ and $\forall x \forall y \forall u F(x, y, f(x, y), u, g(x, y, u))$ evaluates to $\mathbf{0}$. Hence, the inverse implication is not valid.

Exercise AD2 Prove that if $\forall x_{1} \cdots \forall x_{n} F$ is satisfiable, then $\forall x_{1} \cdots \forall x_{n} \delta(F)$ is satisfiable.

By the lemma about the definition we get that $\forall x_{1} \cdots \forall x_{n}\left(\epsilon(F) \wedge p_{F}\left(x_{1}, \ldots, x_{n}\right)\right)$ is satisfiable iff $\forall x_{1} \cdots \forall x_{n} F$ is satisfiable. It suffices to show that if $\epsilon(F)$ is satisfiable, then $\gamma(F):=\bigwedge_{G \in \Sigma(F)} D_{G}$ is satisfiable. We will perform an inductive proof on the logical complexity of $F$.

Basis $F$ is atomic. Then, $\epsilon(F)=E_{F}$ and $E_{F}$ has the form $\forall X\left(p_{F}(X) \leftrightarrow F\right)$, by applying equivalence transformations we get

$$
\begin{aligned}
& \forall X\left(p_{F}(X) \leftrightarrow F\right) \\
\Longleftrightarrow & \forall X\left(\left(p_{F}(X) \rightarrow F\right) \wedge\left(F \rightarrow p_{F}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(\neg p_{F}(X) \vee F\right) \wedge\left(\neg F \vee p_{F}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\neg p_{F}(X) \vee F\right) \wedge \forall X\left(\neg F \vee p_{F}(X)\right) .
\end{aligned}
$$

It is obvious that the last formula is equivalent to $D_{F}$. Since $\gamma(F)=D_{F}$, if $\epsilon(F)$ is satisfiable then $\gamma(F)$ is satisfiable.

Induction hypothesis Assume that, for all $H$ with $l c(H)<m$, if $\epsilon(H)$ is satisfiable, then $\gamma(H)$ is satisfiable.

Step Consider a formula $G$ with $l c(G)=m$. We perform a case distinction wrt. the top-level symbol in $G$.

Case $G$ is of the form $\neg H$. Then, $E_{G}$ is of the form $\forall X\left(p_{G}(X) \leftrightarrow \neg p_{H}(X)\right)$, by applying equivalence transformations we get

$$
\begin{aligned}
& \forall X\left(p_{G}(X) \leftrightarrow \neg p_{H}(X)\right) \\
\Longleftrightarrow & \forall X\left(\left(p_{G}(X) \rightarrow \neg p_{H}(X)\right) \wedge\left(\neg p_{H}(X) \rightarrow p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(\neg p_{G}(X) \vee \neg p_{H}(X)\right) \wedge\left(p_{G}(X) \vee p_{H}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\neg p_{G}(X) \vee \neg p_{H}(X)\right) \wedge \forall X\left(p_{G}(X) \vee p_{H}(X)\right) .
\end{aligned}
$$

Thus, $E_{G}$ is equivalent to $D_{G}$ and furthermore if $E_{G}$ is satisfiable then $D_{G}$ is satisfiable. Hence, by the induction hypothesis, the equivalence of $E_{G}$ and $D_{G}$, and the construction of $D_{G}$, we get that if $\epsilon(G)$ is satisfiable, then $\gamma(G)$ is satisfiable.

Case $G$ is of the form $H_{1} \wedge H_{2}$. Then, $E_{G}$ is of the form $\forall X\left(p_{G}(X) \leftrightarrow\left(p_{H_{1}}(Y) \wedge\right.\right.$ $\left.p_{H_{2}}(Z)\right)$ ) where $X=Y \cup Z$, by applying equivalence transformations we get

$$
\begin{align*}
& \forall X\left(p_{G}(X) \leftrightarrow\left(p_{H_{1}}(Y) \wedge p_{H_{2}}(Z)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(p_{G}(X) \rightarrow\left(p_{H_{1}}(Y) \wedge p_{H_{2}}(Z)\right)\right) \wedge\left(\left(p_{H_{1}}(Y) \wedge p_{H_{2}}(Z)\right) \rightarrow p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(\neg p_{G}(X) \vee\left(p_{H_{1}}(Y) \wedge p_{H_{2}}(Z)\right)\right) \wedge\left(\neg\left(p_{H_{1}}(Y) \wedge p_{H_{2}}(Z)\right) \vee p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(\neg p_{G}(X) \vee p_{H_{1}}(Y)\right) \wedge\left(\neg p_{G}(X) \vee p_{H_{2}}(Z)\right) \wedge\left(\neg p_{H_{1}}(Y) \vee \neg p_{H_{2}}(Z) \vee p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\neg p_{G}(X) \vee p_{H_{1}}(Y)\right) \wedge \forall X\left(\neg p_{G}(X) \vee p_{H_{2}}(Z)\right) \wedge \\
& \forall X\left(\neg p_{H_{1}}(Y) \vee \neg p_{H_{2}}(Z) \vee p_{G}(X)\right) . \tag{1}
\end{align*}
$$

Furthermore $D_{G}$ is of the form

$$
\begin{equation*}
\forall X\left(\neg p_{H}(X) \vee p_{H_{1}}(X)\right) \wedge \forall X\left(\neg p_{G}(X) \vee p_{G_{2}}(X)\right) \wedge \forall X\left(p_{G}(X) \vee \neg p_{G_{1}}(X) \vee \neg p_{G_{2}}(X)\right) . \tag{2}
\end{equation*}
$$

It is obvious that (1) is equivalent to (2). Hence, by the induction hypothesis, the equivalence of (1) and (2), and the construction of $D_{G}$, we get that if $\epsilon(G)$ is satisfiable, then $\gamma(G)$ is satisfiable.

Case $G$ is of the form $H_{1} \circ H_{2}$ st. $\circ \in\{\vee, \rightarrow\}$. These cases are analogous to the one above.

Case $G$ is of the form $\forall v H$. Then, $E_{G}$ is of the form $\forall X\left(p_{G}(X) \leftrightarrow \forall v p_{H}(X, v)\right)$, by applying equivalences we get

$$
\begin{aligned}
& \forall X\left(p_{G}(X) \leftrightarrow \forall v p_{H}(X, v)\right) \\
\Longleftrightarrow & \forall X\left(\left(p_{G}(X) \rightarrow \forall v p_{H}(X, v)\right) \wedge\left(\forall v p_{H}(X, v) \rightarrow p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(\neg p_{G}(X) \vee \forall v p_{H}(X, v)\right) \wedge\left(\neg \forall v p_{H}(X, v) \vee p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X\left(\left(\neg p_{G}(X) \vee \forall v p_{H}(X, v)\right) \wedge\left(\exists v \neg p_{H}(X, v) \vee p_{G}(X)\right)\right) \\
\Longleftrightarrow & \forall X \forall v\left(\neg p_{G}(X) \vee p_{H}(X, v)\right) \wedge \forall X\left(\exists v \neg p_{H}(X, v) \vee p_{G}(X)\right)
\end{aligned}
$$

Considering the skolem form of the last formula

$$
\forall X \forall v\left(\neg p_{G}(X) \vee p_{H}(X, v)\right) \wedge \forall X\left(\neg p_{H}(X, f(X)) \vee p_{G}(X)\right),
$$

we obtain a formula which is satisfiable iff $E_{G}$ is satisfiable. Furthermore it is easy to see that if this skolem form is satisfiable, then so is $D_{G}$.

Case $G$ is of the form $\exists v H$. This case is analogous to the one above.
Exercise AD3 Compute $\delta(F)^{\prime}$ for $F=\exists y(p(x, g(x, y)) \rightarrow \exists z \neg(p(g(x, z), y) \vee p(y, x)))$.

$$
\begin{array}{ll}
D_{\vee}: & \forall x y z\left(\neg p_{\vee}(x, y, z) \vee p(g(x, z), y) \vee p(y, x)\right) \wedge \\
& \forall x y z\left(p_{\vee}(x, y, z) \vee \neg p(g(x, z), y)\right) \wedge \\
& \forall x y z\left(p_{\vee}(x, y, z) \vee \neg p(y, x)\right) \\
D_{\neg}: & \forall x y z\left(\neg p_{\neg}(x, y, z) \vee \neg p_{\vee}(x, y, z)\right) \wedge \\
& \forall x y z\left(p_{\neg}(x, y, z) \vee p_{\vee}(x, y, z)\right) \\
D_{\exists_{1}}: & \forall x y\left(\neg p_{\exists_{1}}(x, y) \vee p_{\neg}(x, y, f(x, y))\right) \wedge \\
& \forall x y \forall z\left(p_{\exists_{1}}(x, y) \vee \neg p_{\neg}(x, y, z)\right) \\
D_{\rightarrow}: & \forall x y\left(\neg p_{\rightarrow}(x, y) \vee \neg p(x, g(x, y)) \vee p_{\exists_{1}}(x, y)\right) \wedge \\
& \forall x y\left(p_{\rightarrow}(x, y) \vee p(x, g(x, y))\right) \wedge \\
& \forall x y\left(p_{\rightarrow}(x, y) \vee \neg p_{\exists_{1}}(x, y)\right) \\
D_{\exists_{2}}: & \forall x\left(\neg p_{\exists_{2}}(x) \vee p_{\rightarrow}(x, h(x))\right) \wedge \\
& \forall x \forall y\left(p_{\exists_{2}}(x) \vee \neg p_{\rightarrow}(x, y)\right)
\end{array}
$$

Considering $\delta(F)^{\prime}$ as a set of clauses we get

$$
\begin{aligned}
\left\{\neg p_{\vee}(x, y, z) \vee p(g(x, z), y) \vee p(y, x), p_{\vee}(x, y, z) \vee \neg p(g(x, z), y), p_{\vee}(x, y, z) \vee \neg p(y, x),\right. \\
\neg p_{\neg}(x, y, z) \vee \neg p_{\vee}(x, y, z), p_{\neg}(x, y, z) \vee p_{\vee}(x, y, z), \\
\neg p_{\exists_{1}}(x, y) \vee p_{\neg}(x, y, f(x, y)), p_{\exists_{1}}(x, y) \vee \neg p_{\neg}(x, y, u), \\
\neg p_{\rightarrow}(x, y) \vee \neg p(x, g(x, y)) \vee p_{\exists_{1}}(x, y), p_{\rightarrow}(x, y) \vee p(x, g(x, y)), p_{\rightarrow}(x, y) \vee \neg p_{\exists_{1}}(x, y), \\
\left.\neg p_{\exists_{2}}(x) \vee p_{\rightarrow}(x, h(x)), p_{\exists_{2}}(x) \vee \neg p_{\rightarrow}(x, u), p_{\exists_{2}}(x)\right\} .
\end{aligned}
$$

Exercise AD4 Find all Robinson-resolvents of $C=p(x, f(x)) \vee p(a, y)$ and $D=$ $\neg p(x, y) \vee \neg p(a, f(x)) \vee \neg p(f(x), f(y))$. Specify all used renamings, mgus and (implicit) factors.

As a first step, we only consider Robinson-resolvents of trivial factors, and we consider the variable disjoint variant $C^{\prime}=p(u, f(u)) \vee p(a, v)$ with $\nu=\{x \mapsto u, y \mapsto v\}$.

- Resolving upon first literal of $C^{\prime}$ and first literal of $D$ using mgu $\{x \mapsto u, y \mapsto f(u)\}$ we obtain the resolvent $p(a, v) \vee \neg p(a, f(u)) \vee \neg p(f(u), f(f(u)))$.
- Resolving upon first literal of $C^{\prime}$ and second literal of $D$ using mgu $\{u \mapsto a, x \mapsto a\}$ we obtain the resolvent $p(a, v) \vee \neg p(a, y) \vee \neg p(f(a), f(y))$.
- Resolving upon first literal of $C^{\prime}$ and third literal of $D$ using mgu $\{u \mapsto f(x), y \mapsto$ $f(x)\}$ we obtain the resolvent $p(a, v) \vee \neg p(x, f(x)) \vee \neg p(a, f(x))$.
- Resolving upon second literal of $C^{\prime}$ and first literal of $D$ using mgu $\{x \mapsto a, y \mapsto v\}$ we obtain the resolvent $p(u, f(u)) \vee \neg p(a, f(a)) \vee \neg p(f(a), f(v))$.
- Resolving upon second literal of $C^{\prime}$ and second literal of $D$ using mgu $\{v \mapsto f(x)\}$ we obtain the resolvent $p(u, f(u)) \vee \neg p(x, y) \vee \neg p(f(x), f(y))$.

In the next step, we consider Robinson-resolvents of non-trivial factors.

- Let $C^{\prime}=p(a, f(a))$ be a factor of C by using the $\mathrm{mgu}\{x \mapsto a, y \mapsto f(a)\}$. Resolving upon the first literal of $C^{\prime}$ and the first literal of $D$ using mgu $\{x \mapsto a, y \mapsto f(a)\}$ yields the resolvent $\neg p(a, f(a)) \vee \neg p(f(a), f(f(a)))$.
- Let $C^{\prime}=p(a, f(a))$ be a factor of C by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$. Resolving upon the first literal of $C^{\prime}$ and the second literal of $D$ using mgu $\{x \mapsto a\}$ yields the resolvent $\neg p(a, y) \vee \neg p(f(a), f(y))$.
- Let $D^{\prime}=\neg p(a, f(a)) \vee \neg p(f(a), f(f(a)))$ be a factor of D by using the mgu $\{x \mapsto$ $a, y \mapsto f(a)\}$. Resolving upon the first literal of $C$ and the first literal of $D^{\prime}$ using mgu $\{x \mapsto a\}$ yields the resolvent $p(a, y) \vee \neg p(f(a), f(f(a)))$.
- Let $D^{\prime}=\neg p(a, f(a)) \vee \neg p(f(a), f(f(a)))$ be a factor of D by using the $\mathrm{mgu}\{x \mapsto$ $a, y \mapsto f(a)\}$. Resolving upon the first literal of $C$ and the second literal of $D^{\prime}$ using mgu $\{x \mapsto f(a)\}$ yields the resolvent $p(a, y) \vee \neg p(a, f(a))$.
- Let $D^{\prime}=\neg p(a, f(a)) \vee \neg p(f(a), f(f(a)))$ be a factor of D by using the mgu $\{x \mapsto$ $a, y \mapsto f(a)\}$. Resolving upon the second literal of $C$ and the first literal of $D^{\prime}$ using mgu $\{y \mapsto f(a)\}$ yields the resolvent $p(x, f(x)) \vee \neg p(f(a), f(f(a)))$.
- Let $C^{\prime}=p(a, f(a))$ be a factor of C by using the mgu $\{x \mapsto a, y \mapsto f(a)\}$ and $D^{\prime}=\neg p(a, f(a)) \vee \neg p(f(a), f(f(a)))$ be a factor of D by using the mgu $\{x \mapsto$ $a, y \mapsto f(a)\}$. We can immediately resolve upon the first literal of $C^{\prime}$ and the first literal of $D^{\prime}$ and we obtaion the resolvent $\neg p(f(a), f(f(a)))$.

Exercise AD5 Describe another resolution refinement (other than ordered resolution) in detail. (You do not have to give a completeness proof).

In the following, we will consider hyperresolution as a resolution refinement. The desription is based on the paper about Resolution Theorem Proving ${ }^{1}$, especially the definition and the example are taken from this work.

Hyperresolution is the deduction principle where only positive clauses and the empty clause are derivable. A clause is called positive if it is of the form $\vdash A_{1}, \ldots, A_{n}$, where $A_{1}, \ldots, A_{n}$ are atoms. The derivation of just positive clauses is only possible if we use many-step instead of one-step inferences.

Definition 1. Let $C$ be a nonpositive clause and $D_{1}, \ldots, D_{n}$ be positive clauses; then $S:\left(C ; D_{1}, \ldots, D_{n}\right)$ is called a clash sequence. Let $C_{0}=0$ and $C_{i}+1 \in \mathcal{R e s}\left(\left\{C_{i}, D_{i+1}\right\}\right)$ for $i=1, \ldots, n-1$. If $C_{n}$ is defined and positive then it is called a hyperresolvent of $S$.

Remark. $\operatorname{Res}(\mathcal{C})$ denotes the set of resolvents definable from a set of clauses $\mathcal{C}$.
Example 1. Let $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ be a set of clauses where

$$
\begin{aligned}
& C 1=\vdash p(a, b) \\
& C 2=\vdash p(b, a) \\
& C 3=p(x, y), p(y, z) \vdash p(x, z) \\
& C 4=p(a, a) \vdash .
\end{aligned}
$$

We can construct a refutation of $\mathcal{C}$ :

Note that $\vdash p(a, a)$ is a hyperresolvent of the clash sequence $\left(C_{3} ; C_{1}, C_{2}\right)$.

[^0]
[^0]:    ${ }^{1}$ Alexander Leitsch, http://www.logic.at/staff/leitsch/httpd/resolv.pdf

