Exercises 2: Optimization in Transport and Logistics

Jakob Puchinger and Ulrike Ritzinger

Opening: 23.05.2013 Exercise: 13.06.2013

The following problem instance is used for the examples 1-7: A Capacitated Vehicle Routing Problem is given. The demand of each customer is 1 and the capacity of the vehicles is 4 . Node 0 denotes the depot. The max. route length is 16. Use the Euclidean Distances. The coordinates of the nodes are: $0(0,0)$, $1(4,1), 2(1,2), 3(0,5), 4(-3,3), 5(-2,1), 6(-5,1), 7(-5,-1), 8(-1,-3), 9(3,-2), 10(6,-1)$

1. Demonstrate the Sweep Algorithm.
2. Compute the matrix with savings values
3. Demonstrate the sequential Savings Heuristic.
4. Demonstrate the parallel Savings Heuristic.
5. Demonstrate insertion based construction heuristics (e.g., nearest neighbor, parallel insertion, ...)
6. Demonstrate the Fisher and Jaikumar Algorithm. Determine three seed customers by farthest away method.
7. Demonstrate local improvement methods discussed in the class on the basis of so far constructed routes.
8. Demonstrate the Beasley algorithm on following graph: depot $(0,0)$, $\mathrm{a}(-40,10), \mathrm{b}(-30,30), \mathrm{c}(0,50), \mathrm{d}(40,30), \mathrm{e}(70,10)$. The capacities of the $\mathrm{cu}-$ stomers are: $\mathrm{a}=5, \mathrm{~b}=4, \mathrm{c}=4, \mathrm{~d}=2, \mathrm{e}=7$. The maximum capacity of the vehicle is 10 . Take nearest neighbor insertion to get the giant tour.
9. Compute the forward time slack and the new arrival, departure and waiting times for the following example:

i	e_{i}	l_{i}	A_{i}	D_{i}	W_{i}
0	$07: 00$	$19: 00$	-	$07: 00$	-
1	$10: 00$	$13: 00$	$08: 00$	$10: 00$	2 h
2	$10: 00$	$13: 00$	$10: 30$	$10: 30$	-
3	$15: 00$	$17: 00$	$11: 30$	$15: 00$	3.5 h
4	$07: 00$	$19: 00$	$16: 00$	-	-

with travel time $t_{01}=t_{23}=t_{34}=1 \mathrm{~h}$ and $t_{12}=0.5 \mathrm{~h}$

