VORLESUNG TECHNISCHE HYDRAULIK
 222.564

Exercises

Hydrostatics - Laminar Flow - Turbulent Flow - Pipe Flow

Exercise from the lecture TH_Hydrostatics

Ex 2. Hydrostatics. Forces on submerged curved planes

1) Draw the pressure distribution and force components on the structure
2) Compute the horizontal force component, the vertical force component, as well as the resultant force, its direction and its action point.
Note that all considerations are per unit width

Exercise from the lecture TH_Hydrostatics

Ex 3. Hydrostatics. Forces on submerged curved planes

1) Draw the pressure distribution and force components on the structure
2) Compute the horizontal force component, the vertical force component, as well as the resultant force, its direction and its action point.
Note that all considerations are per unit width

Exercise from the lecture TH_Hydrostatics

Exercise from the lecture TH _Hydrostatics

Exercise from the lecture TH_Hydrostatics

Exercise from the lecture TH_Hydrostatics

Exercise from the lecture TH_Hydrostatics. Questions 2 and 3 have been resolved in the lecture TH_Laminar_Turbulent.

Ex 2. Pipe flow

Input data:

- $\rho=900\left[\mathrm{~kg} \mathrm{~m}^{-3}\right]$
- $\mu=1.0\left[\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right]$. Note that the viscosity of different kinds of oil varies over at least two orders of magnitude. The viscosity can be lowered by adding additives.
- $Q=2.5\left[\mathrm{~m}^{3} \mathrm{~s}^{-1}\right]$
- $D=1[\mathrm{~m}]$; the pipe material is very smooth

Simplifications:

- Consider oil as Newtonian fluid. In reality, oil is non-Newtonian with a viscosity that strongly depends on temperature and other factors

Questions:

- Compute the main flow characteristics: $-\partial p^{*} / \partial x, \tau_{b}, u(r), u_{\max }, U$
- Is the flow laminar or turbulent ?
- What is the effect of a change in viscosity on the flow regime (Re) and the required pressure gradient ? Consider viscosities that are 10 times higher and lower.

Exercise from the lecture TH_Hydrostatics. Questions 2 and 3 have been resolved in the lecture TH_Laminar_Turbulent.

Example from the lecture TH_Laminar_Turbulent. To-be-developed similar to the example given in the lecture for arterial flow

Ex 4. Pipe flow

Water at a temperature of 10° flows in a pipe of diameter $D=0.3 \mathrm{~m}$. The roughness of the steel pipe is characterized by an equivalent sand roughness of $k_{s}=0.0003 \mathrm{~m}$. The energy losses per unit length are 0.002.

1) Determine the flow regime
2) Determine the friction Dary-Weisbach friction coefficient f
3) Determine the discharge Q

Hint: the solution makes use of the Moody-Stanton diagram or the equivalent ColebrookWhite formula

Ex 5. Pipe flow

A $0.250 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ discharge of petrol with a kinematic viscosity of $9 \times 10-6 \mathrm{~m}^{2} \mathrm{~s}^{-1}$ is transported in a $10^{\prime} 000 \mathrm{~m}$ long steel pipeline with characteristic sand roughness $k_{s}=$ 0.00005 m . The total energy loss is 25 m .

1) Determine the flow regime
2) Determine the friction Dary-Weisbach friction coefficient f
3) Determine the diameter of the pipe.

Hint: the solution makes use of the Moody-Stanton diagram or the equivalent ColebrookWhite formula

Ex 6. Pipe flow

Siphon: A tube used to convey liquid upwards from a reservoir and then down to a lower level of its own accord. Once the liquid has been forced into the tube, typically by suction or immersion, flow continues unaided

$$
\begin{aligned}
& D=0.5 \mathrm{~m} \\
& k_{s}=0.00015 \mathrm{~m} \\
& L_{1}=L_{2}=4 \mathrm{~m}, L_{3}=8 \mathrm{~m}
\end{aligned}
$$

Case 1: All minor energy losses are neglected.

1) Determine the discharge Q, the Darcy-Weisbach friction coefficient f, and the flow regime.
2) Draw the total energy line, and the potential energy line. Deduce from both the evolution of the pressure along the pipe.
3) Where does the minimum pressure in the pipe occur and what is its value ?
4) Is there a risk of cavitation in that point?

Ex 7. Pipe flow

Siphon: A tube used to convey liquid upwards from a reservoir and then down to a lower level of its own accord. Once the liquid has been forced into the tube, typically by suction or immersion, flow continues unaided

Case 2: Minor energy losses occur at the pipe inflow ($K=0.2$), and in the two bends ($K=0.3$ for each bend)

1) Determine the discharge Q, the Darcy-Weisbach friction coefficient f, and the flow regime.
2) Draw the total energy line, and the potential energy line. Deduce from both the evolution of the pressure along the pipe.
3) Where does the minimum pressure in the pipe occur and what is its value ?
4) Is there a risk of cavitation in that point ?
