VORLESUNG TECHNISCHE HYDRAULIK 222.564

Exercises

Hydrostatics – Laminar Flow – Turbulent Flow – Pipe Flow

Exercise from the lecture TH_Hydrostatics

Exercise from the lecture TH_Hydrostatics

Ex 6. Hydrostatics. Archimedes principle – buoyant force
Ein Behälter mit Wasser steht auf einer Waage. Man taucht den Finger ein – was passiert mit der Anzeige auf der Waage?
a) steigt
b) sinkt
c) bleibt gleich?
Begründung ?

Ex 7. Hydrostatics. Archimedes principle – buoyant force
Ein Fischer sitzt in einem Boot in einem kleinen Teich und wirft den Anker aus. Was passiert mit dem Wasserspiegel?
a) steigt
b) sinkt
c) bleibt gleich?
Und wenn der Teich sehr groß ist ?

Exercise from the lecture TH_Hydrostatics. Questions 2 and 3 have been resolved in the lecture TH_Laminar_Turbulent.

Exercise from the lecture TH_Hydrostatics. Questions 2 and 3 have been resolved in the lecture TH_Laminar_Turbulent.

Example from the lecture TH_Laminar_Turbulent. To-be-developed similar to the example given in the lecture for arterial flow

Ex 4. Pipe flow

Water at a temperature of 10° flows in a pipe of diameter D = 0.3 m. The roughness of the steel pipe is characterized by an equivalent sand roughness of $k_s = 0.0003$ m. The energy losses per unit length are 0.002.

- 1) Determine the flow regime
- 2) Determine the friction Dary-Weisbach friction coefficient f
- 3) Determine the discharge Q

Hint: the solution makes use of the Moody-Stanton diagram or the equivalent Colebrook-White formula

