
VORLESUNG

TECHNISCHE HYDRAULIK

222.564

Exercises - Solutions
Hydrostatics – Laminar Flow – Turbulent Flow – Pipe Flow
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Ex 1. Hydrostatics. Forces on submerged inclined planes

2

z

y

Bottom outlet

Front view

Outlet 1

a =75

-100 m

-200 m

-285 m

d = 8 m

Ixx =
1

64
pd4

What are the magnitude, direction and application 
point of the forces acting on both outlet gates ?

Foutlet,1

.

.

Fbottomoutlet

Exercise from the lecture TH_Hydrostatics
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Ex 1. Hydrostatics. Solution

• Magnitude of the force: F = g sina y
S
A= gh

S
A

With hs the depth below the water surface of the centre of gravity of the outlet valves

Foutlet,1 = 4.93 x 107 [N]

Fbottomoutlet = 9.86 x 107[ N]

• Direction of the force: perpendicular to the outlets = at an angle of 75° with the vertical

• Application point of the force, hD: y
D

- y
s

=
Ixx

y
S
A

hD,outlet,1 = 100.037 [m] 

hD -hs =
Ixx

ysA
sina =

Ixx

hsA
sin2 a

hD,bottomoutlet = 200.019 [m] 

The solution is found by applying the relevant formulae seen in TH_Hydrostatics
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Ex 2. Hydrostatics. Forces on submerged curved planes

D = 3 m

D/2 = 1.5 m

1) Draw the pressure distribution and force components on the structure
2) Compute the horizontal force component, the vertical force 

component, as well as the resultant force, its direction and its action 
point.

Note that all considerations are per unit width

Exercise from the lecture TH_Hydrostatics
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Ex 2. Hydrostatics. Solution

D = 3 m

D/2 = 1.5 m

1) Draw the pressure distribution and force components on the structure
Pressure distribution: p = rgh, where
• h is the vertical distance below the water surface
• p acts perpendicularly to the structure
The resultant force components at both sides also act perpendicularly to the structure.
The resultant of forces at both sides (F) also acts perpendicularly to the structure

pleft
pright

Fleft

Fright

F
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Ex 2. Hydrostatics. Solution

2) Compute the horizontal force component, the vertical force component, as well as the 
resultant force, its direction and its action point.

• The easiest method to compute the resultant force on the structure is by 
separately computing the horizontal and vertical components.  

• The horizontal component is equal to the horizontal pressure force that would 
act on the projection of the structure on a vertical plane.  

D = 3 m

D/2 = 1.5 m

M
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Ex 2. Hydrostatics. Solution
In general, Fhor = rghsA, where hs is the depth of the centre of gravity below the 
free surface, and A is the surface area on which the pressure acts
• Here, hs,left = D/4 , and hs,right = D /2
• Since our considerations are per unit with, Aleft = D /2 and Aright = D

F
hor ,left

= rgD2

8

F
hor ,right

= rgD2

2

= 11.04 [kN m-1]

= 44.15 [kN m-1]

Fhor,res = 33,11 [kN m-1],

acting from right to left

It is straightforward to compute the action point of Fhor. In order to determine the 
action point of the resultant of Fhor and Fvert, however, it is more convenient to 
exploit the characteristic that the resultant is perpendicular to the structure.

2) Compute the horizontal force component, the vertical force component, as well as the 
resultant force, its direction and its action point.

• The vertical component is equal to the weight of the fluid above the structure, 
which is not trivial in this case. A convenient approach consists in dividing the 
contributions to the vertical force into three parts:  
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Ex 2. Hydrostatics. Solution

+

+
Fvert,res = rgV

=rgpD2/16

= 17.34 [kN m-1]

Resultant force: F = F
hor ,res
2 + F

vert ,res
2 = 37.4 

kN

m

é

ë
ê

ù

û
ú

+
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Ex 2. Hydrostatics. Solution

D = 3 m

D/2 = 1.5 m

Fvert,res

M

α

xD
zD

Fhor,res

• Force action point: the resultant force is perpendicular to the 
structure, and therefore goes through the circle centre:

• Force direction: a = atan
F
vert ,res

F
hor ,res

æ

è
çç

ö

ø
÷÷ = atan

17.34

33.11

æ

è
ç

ö

ø
÷ =27.64°

x
D

= D

2
cosa =1.33 [m]

z
D

= D

2
1- sina( ) = 0.80 [m]

F
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Ex 3. Hydrostatics. Forces on submerged curved planes

R

h

A

E

h

Radial weir
R = constant = 4 m
D = 3m

DD
R

1) Draw the pressure distribution and force components on the structure
2) Compute the horizontal force component, the vertical force 

component, as well as the resultant force, its direction and its action 
point.

Note that all considerations are per unit width

Exercise from the lecture TH_Hydrostatics
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R

h
A

E

h

Segmentwehr
R = konstant = 4 m
D = 3m

D
D

R

f
Rcosf

R
D

FZ

α
FX

FD

xD

zD

Ex 3. Hydrostatics. Solution

1) Draw the pressure distribution and force components on the structure

x

z

Exercise from the lecture TH_Hydrostatics
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Ex 3. Hydrostatics. Solution
2) Compute the horizontal force component, the vertical force component, as well as the 

resultant force, its direction and its action point.

• The easiest method to compute the resultant force on the structure is by 
separately computing the horizontal and vertical components.  

• The horizontal component is equal to the horizontal pressure force that would 
act on the projection of the structure on a vertical plane.  

• In general, Fx = rghsA, where hs is the depth of the centre of gravity below the 
free surface, and A is the surface area on which the pressure acts. Here, hs = D /2. 
Since our considerations are per unit with, A = D.

F
x

=
rgD2

2
= 44.15 

kN

m

é

ë
ê

ù

û
ú

• The vertical component Fz is equal to the weight of the fluid above the structure 
(indicated in the sketch). It obviously acts in upward direction in this case.

, where sinf = 3

4
® f = 48.6F

z
= rgV = rg pR2 f

360
- Rcosf.D

2

æ

è
ç

ö

ø
÷ = 27.6 

kN

m

é

ë
ê

ù

û
ú

• The resultant force is: F
D

= F
x
2 + F

z
2 = 52.1 

kN

m

é

ë
ê

ù

û
ú

The solution is found by applying the relevant formulae seen in TH_Hydrostatics
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Ex 3. Hydrostatics. Solution
2) Compute the horizontal force component, the vertical force component, as well as the 

resultant force, its direction and its action point.

• Because the pressure acts perpendicularly to the circular structure in every 
point, the resultant force will also act perpendicularly to the structure, and its 
action line will pass through the circle centre.  

a = atan
F
z

F
x

æ

è
çç

ö

ø
÷÷ = atan

27.62

44.15

æ

è
ç

ö

ø
÷

• Force action point: the resultant force is perpendicular to the 
structure, and therefore goes through the circle centre:

• Force direction: = 32.0°

x
D

= Rcosa = 3.39 [m]

z
D

= D- Rsina = 0.88 [m]

The solution is found by applying the relevant formulae seen in TH_Hydrostatics
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Ex 4. Hydrostatics. Archimedes principle – buoyant force

[http://www.physics.louisville.edu]

rwater (0°) = 999.8 kg m-3

rice (0°)    = 916.7 kg m-3

What percentage volume of the iceberg 
sticks out above the water surfce ?

Exercise from the lecture TH_Hydrostatics

14



15

Ex 4. Hydrostatics. Solution

The downward and upward forces are in equilibrium: Fdown = Fup

The downward force is the weight of the iceberg: F
down

= r
ice
gV

ice

The upward Archimedes force is equal 
to the weight of the displaced water: Fup = rwater gVice,immersed

®
V
ice,immersed

V
ice

=
r
ice

r
water

= 916.7

999.8
= 0.92

 8% of the iceberg sticks out of the water

The solution is found by applying the relevant formulae seen in TH_Hydrostatics
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[www.tunneltalk.com]

Ex 5. Hydrostatics. Archimedes principle – buoyant force

1 ) Will the tunnel element float or sink ?

2) If it floats, what force is required to bring it down 
to the bottom ?

3) If it floats, what is its stable position (by how much 
does it stick out of the water) ?

4) What is the resulting vertical force per unit length 
when the tunnel element lays on the bottom?

15 m4 m
rconcrete = 2400 kg m-3

Wall thickness = 0.7 m

Exercise from the lecture TH_Hydrostatics
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Ex 5. Hydrostatics. Solution

• 1) Will the tunnel element float or sink ?

Let us assume that the tunnel element is totally immersed in the water. If its downward 
weight W is smaller/larger than than the upward Archimedes force FA, it will float/sink. 
Note that we consider forces per unit length.

W = rconcretegVconcrete

= 2400 x 9.81 x [(4 + 2x0.7) x (15 + 2x0.7) - 4x15]

= 672.4 [kN m-1]

FA = rwatergVdisplacedfluid

= 1000 x 9.81 x [(4 + 2x0.7) x (15 + 2x0.7)]

= 868.8 [kN m-1]

FA > W
 the tunnel element floats

2) If it floats, what force is required to bring it down to the bottom ?

To bring it to the bottom, an additional downward force F is required, such that the 
total downward force is larger than the upward Archimedes force:

W + F > FA F > FA - W = 868.8 – 672.4 = 196.4 [kN m-1]
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Ex 5. Hydrostatics. Solution

3) If it floats, what is its stable position (by how much does it stick out of the water) ?

15 m4 m
t The tunnel element floats 

when W = FA. The weight W
does not depend on the degree 
of immersion, but because the 
volume of displaced fluid 
depends on it, FA also depends 
on the degree of immersion.

W = 672.4 [kN m-1]

FA = rwatergVdisplacedfluid

= 1000 x 9.81 x [t x (15 + 2x0.7)]

= 160.9 x t [kN m-1]

W = FA if t = 4.18 [m]

5.4-t

 The tunnel element sticks
5.4 – t = 1.22 [m] out of the water
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Ex 5. Hydrostatics. Solution

4) What is the resulting vertical force per unit length when the tunnel element lays on the bottom?

???

This is a tricky question. It all depends on the pressure 
forces on the bottom of the tunnel element.

As long as there is water below the tunnel element, the 
hydrostatic pressure will act on the bottom and the 
Archimedes force FA computed in question 1) will tend 
to lift the tunnel element from the bottom. This will be 
the case if:
• The bottom consists of granular material, because  

there will be water in the pores between the grains.
• The bottom is not perfectly flat. It is very difficult in 

that case to expulse all the water situated below the 
tunnel element.

Only in case of a perfectly flat and impermeable bottom 
surface, there will not be any hydrostatic pressure 
anymore on the bottom of the tunnel element. In that 
case, the only vertical component of the hydrostatic 
pressure is on the top of the tunnel element and it 
stabilizes the tunnel element on the bottom. 

19



Ein Behälter mit Wasser steht auf einer Waage. Man taucht den Finger ein –

was passiert mit der Anzeige auf der Waage?

a) steigt

b) sinkt

c) bleibt gleich?

Begründung ?

Ex 6. Hydrostatics. Archimedes principle – buoyant force

Exercise from the lecture TH_Hydrostatics
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Ex 6. Hydrostatics. Solution

The weight indicated by the balance 
is the resultant of the vertical 
component of all pressure 
contributions:

h

A

W=pA=rghA

h+∆h

A

Assume that the inserted object has an immersed 
volume V. The water level in the recipient will rise 
by ∆h=V/A, and the pressure on the bottom will rise 
by ∆p=rg∆h. Hence, the integral of the pressure on 
the bottom will rise by ∆W= ∆pA= rgV. 

• In case the inserted object floats, ∆W = rgV = FA is equal to the upward Archimedes force 
on the object (weight of displaced fluid), which is equal to the total weight of the object, 
Wobject. So we find the very logical result that the weight indicated by the balance is the 
weight of the water plus the weight of the inserted object.

• But when the inserted object is your finger, it does not float because you carry your finger. 
This means that only the upward Archimedes force acts, and it directly balances the 
additional pressure force on the bottom ∆W. Hence the weight indicated by the balance will 
not change.

V

Initial situation Object in the water

Wobject

FA

∆p

21



Ein Fischer sitzt in einem Boot in einem kleinen Teich und wirft den Anker 

aus. Was passiert mit dem Wasserspiegel?

a) steigt

b) sinkt

c) bleibt gleich?

Und wenn der Teich sehr groß ist ?

Ex 7. Hydrostatics. Archimedes principle – buoyant force

Exercise from the lecture TH_Hydrostatics
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Ex 7. Hydrostatics. Solution

• It displaces a volume of fluid in the pond that is equal to its own volume, ∆V1=Vanchor.

• The boat becomes lighter by ∆W = ranchorVanchor. As a result, the Archimedes force required 
to keep the boat floating is reduced by ∆FA = ∆W  = rwater∆V2 , where ∆V2 represents the 
corresponding reduction in the volume of displaced fluid. 

When the anchor is thrown in the water:

This causes a lowering of the water level in the pond by ∆h =(∆V2 - ∆V2) /A, where A is the 
surface area of the pond. This lowering is negligible, even for very small ponds.

 The total volume of displaced fluid in the pond will decrease by: 

DV
2

- DV
1

=V
anchor

r
anchor

r
water

-1
æ

è
çç

ö

ø
÷÷ > 0

The solution is found by applying the relevant formulae seen in TH_Hydrostatics
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Ex 1. Pipe flow

• r = 1060 [kg m-3]

• m = 3.0 x 10-3 [kg m-1 s-1]

Input data:

• Heart pumps about  6 liter per minute

Simplifications:
• Consider blood as Newtonian fluid
• Neglect pulsating flow character; 

approximate peak discharge as twice 
average discharge (i.e. as if 12 liter per 
minute were flowing at constant rate)

• Neglect the elasticity of the aorta

• Diameter of aorta: 0.025 [m]

Questions:

• Compute the main flow characteristics: -∂p*/∂x, tb, u(r), umax, U

• Is the flow laminar or turbulent ?

• What is the effect of a change in diameter ? Hint: express Re as a function of Q and D

Exercise from the lecture TH_LaminarFlow. Questions 2 and 3 have been resolved in 
the lecture TH_Laminar_Turbulent. 
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Ex 1. Pipe flow. Solution

Q =
p
8m

-
¶p*

¶x
æ

èç
ö

ø÷
R4 =

p
128m

-
¶p*

¶x
æ

èç
ö

ø÷
D4• Hagen-Poiseuille law: - ¶p*

¶x
= 62.6

N

m3

é

ë
ê

ù

û
ú

Note: it is important always to use SI units. This means that the discharge has to be 
converted in [m3 s-1]. It is good practice to verify that the units of the end result are correct.

pR2 ¶p*

¶x
= 2pRt b• Wall shear stress: t

b
= -0.39

N

m2

é

ë
ê

ù

û
ú

Note: Minus sign because the shear exerted by the wall on the flow is a resistance, which is 
opposed to the flow. The flow exerts a shear on the wall that of equal magnitude but 
opposite sign.

• Velocity distribution:

u= u(r = 0) 1-
r 2

R2

æ

èç
ö

ø÷
=

1

4m
-

¶p*

¶x
æ

èç
ö

ø÷
R2

é

ë
ê
ê

ù

û
ú
ú

1-
r 2

R2

æ

èç
ö

ø÷
= 0.82 1- r 2

R2

æ

è
ç

ö

ø
÷ = u

max
1- r 2

R2

æ

è
ç

ö

ø
÷

U = Q
S

= 4Q

pD2
= 0.41

m

s

é

ë
ê

ù

û
ú

Let us assume that the flow is laminar, which is to be verified !

The solutions are found by substituting the values in the relevant equations given in 
TH_Hydrostatics
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Ex 1. Pipe flow: Solution

• Flow regime: Re =UD
n

= rUD
m

= 3599

According to theory, the critical Reynolds number for the transition from laminar to 
turbulent flow is in the range 2000 to 4000 and depends on the specific flow configuration. 
The value obtained is therefor not conclusive. But nature is a good fluid mechanical 
engineer. Because laminar flow is energetically advantageous, arterial flow in a healthy 
person is laminar.

• What is the effect of a change in diameter ? Hint: express Re as a function of Q and D

The answer has been detailed in the lecture TH_Laminar_Turbulent
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Ex 2. Pipe flow

• r = 900 [kg m-3]

• m = 1.0 [kg m-1 s-1]. Note that the viscosity 
of different kinds of oil varies over at least 
two orders of magnitude. The viscosity can 
be lowered by adding additives. 

Input data:

• Q = 2.5 [m3 s-1]

Simplifications:
• Consider oil as Newtonian fluid. In reality, 

oil is non-Newtonian with a viscosity that 
strongly depends on temperature and other 
factors

• D = 1 [m]; the pipe material is very smooth

Questions:

• Compute the main flow characteristics: -∂p*/∂x, tb, u(r), umax, U

• Is the flow laminar or turbulent ?

• What is the effect of a change in viscosity on the flow regime (Re) and the required 
pressure gradient ? Consider viscosities that are 10 times higher and lower.  

Exercise from the lecture TH_LaminarFlow. Questions 2 and 3 have been resolved in 
the lecture TH_Laminar_Turbulent. 
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Ex 2. Pipe flow. Solution

Q =
p
8m

-
¶p*

¶x
æ

èç
ö

ø÷
R4 =

p
128m

-
¶p*

¶x
æ

èç
ö

ø÷
D4• Hagen-Poiseuille law:

Note: it is important always to use SI units. This means that the discharge has to be 
converted in [m3 s-1]. It is good practice to verify that the units of the end result are correct.

pR2 ¶p*

¶x
= 2pRt b• Wall shear stress:

Note: Minus sign because the shear exerted by the wall on the flow is a resistance, which is 
opposed to the flow. The flow exerts a shear on the wall that of equal magnitude but 
opposite sign.

• Velocity distribution:

u= u(r = 0) 1-
r 2

R2

æ

èç
ö

ø÷
=

1

4m
-

¶p*

¶x
æ

èç
ö

ø÷
R2

é

ë
ê
ê

ù

û
ú
ú

1-
r 2

R2

æ

èç
ö

ø÷

- ¶p*

¶x
=101.9

N

m3
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t
b

= -25.5
N

m2

é
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= 6.4 1- r 2

R2

æ

è
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ö

ø
÷ = u

max
1- r 2

R2

æ

è
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ø
÷

U = Q

S
= 4Q

pD2
= 3.2

m

s-1
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ë
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ù

û
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Let us assume that the flow is laminar, which is to be verified !

The solutions are found by substituting the values in the relevant equations given in 
TH_Hydrostatics
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Ex 2. Pipe flow: Solution

• Flow regime:

According to theory, the critical Reynolds number for the transition from laminar to 
turbulent flow is in the range 2000 to 4000 and depends on the specific flow configuration. 
The value obtained is therefor not conclusive, and we can not be sure that the solutions 
obtained for ∂p*/∂x, tb and the velocity distribution are correct.

• What is the effect of a change in viscosity ?

Re =UD
n

= rUD
m

= 2865

• The cross-sectionally averaged velocity will not change, because it is 
fully determined by the given Q and D.

• For a viscosity that is 10 times higher, Re will be 10 times lower and 
the flow will be laminar. The velocity distribution derived on the 
previous slide will be correct. The flow will be induced by a value of 
∂p*/∂x that is 10 times higher than the one on the previous slide. The 
wall shear stress will also be 10 times higher than the one on the 
previous slide.

• For a viscosity that is 10 times lower, Re will be 10 times higher and 
the flow will be turbulent. The solutions for laminar flow are not 
valid anymore, and the theory for turbulent flow has to be used.
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Exercise 3: Pipe flow

• r = 1000 [kg m-3]

• m = 1.0 x 10-3 [kg m-1 s-1]

Input data:

• Q = 8 [m3 s-1]

• D = 1 [m]

Questions:

• Is the flow laminar or turbulent ?

• What slope would be required to transport Q in this pipe if the flow were laminar ? 

Opponitz Kraftwerk , Wien Energie, Austria

• In case it is turbulent, would it be possible to make it laminar by changing D ?

Exercise from TH_LaminarFlow
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Ex 3. Pipe flow. Solution

• Is the flow laminar or turbulent ?

U = Q

S
= 4Q

pD2

Re =UD

n
= rUD

m
Re =UD

n
= 4rQ

pmD
=1.02x107 Turbulent

• In case it is turbulent, would it be possible to make it laminar by changing D ?

D = 4rQ
pm Re

= 5093 [m] ,where Re = 2000 has been chosen to guarantee laminar flow

This is obviously an unrealistic value
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Ex 3. Pipe flow. Solution

• What slope would be required to transport Q in this pipe if the flow were laminar ? 

Q =
p
8m

-
¶p*

¶x
æ

èç
ö

ø÷
R4 =

p
128m

-
¶p*

¶x
æ

èç
ö

ø÷
D4Hagen-Poiseuille law: - ¶p*

¶x
= 0.33

N

m3
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ê

ù

û
ú

x

- ¶p*

¶x
= - ¶

¶x
p+ rgh( ) = - ¶p

¶x
- rg¶h

¶x

Datum

pa

pa
h

h

-∂h/∂x

® slope = atan - ¶h
¶x

æ

è
ç

ö

ø
÷ » -¶h

¶x
= 3.3x10-5

A very mild slope would be sufficient to transport the discharge if the flow remained  
laminar at this Re number. Because the flow is turbulent at this Re number, the 
energy losses are much higher, and a much higher slope is required to transport the 
same discharge.
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Ex 4. Pipe flow 

Assume that the air flow in the trachea can be approximated by flow in a rigid pipe.
1. Compute and plot the energy losses per unit length as a function of the air 

velocity for a diameter of 0.02 m.
2. Compute and plot the energy losses per unit length as a function of the diameter 

for a given discharge corresponding to the values given in the table.

Example from the lecture TH_Laminar_Turbulent. The solution is similar to the 
example given in the lecture for arterial flow
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Laminar Turbulent

34

h
r

Dl
=

32

g

nU
D2

h
r

Dl
=

1

2g

fU 2

D

X

Ex 4. Pipe flow. Solution
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Turbulent Laminar

35

X

h
r

Dl
=

128

gp
nQ
D4

h
r

Dl
=

8

p 2g

fQ2

D5

Smooth turbulent

Transition for       
ks/D = 1 mm/25 mm

Laminar

Ex 4. Pipe flow. Solution

• Note that energy losses are much larger than in the arterial flow. This is because:
• (i) the air velocity in the trachea is much higher than the blood velocity in the 

aorta, leading to a higher discharge
• (ii) the kinematic viscosity of air is three times larger than that of water.
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Ex 5. Pipe flow 
Water at a temperature of 10° flows in a pipe of diameter D = 0.3 m. The roughness of the 
steel pipe is characterized by an equivalent sand roughness of ks = 0.0003 m. The energy 
losses per unit length are 0.002.

1) Determine the flow regime
2) Determine the friction Dary-Weisbach friction coefficient f
3) Determine the discharge Q
Hint: the solution makes use of the Moody-Stanton diagram or the equivalent Colebrook-
White formula

36
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Ex 5. Pipe flow. Solution
Solution according to procedure outlined in application example 2 of TH_Pipeflow

D, hr, ks, n known  Q, U, f, Re to be solved
Iteration step 1:

ks = 0.3 x 10-3 [m]  ks/D = 1 x 10-3.

1. Initial guess of f. 

We choose an initial value of f on the ks/D = 
0.001 curve in the Moody-Stanton diagramRe is unknown

Since we expect for this flow a relatively high Re number, it would be logical to choose 
an initial value at the right side of the ks/D = 0.001 curve close to the value for a rough 
turbulent flow that is independent of Re. For the purpose of illustrating the iterative 
procedure, let us take an initial value of f towards the left side of the ks/D = 0.001 curve.

f1 = 0.04 (see figure on previous slide).

2. Initial guess of Q from the Darcy-Weisbach equation: = 0.0383 [m3 s-1]

3. Initial guess of Re: Re
1

=
4Q1

pDn = 1.25 x 105

Water at 10°: n = 1.307x10-6 [m2 s-1] 

Q
1

=
h
r

Dl
p 2g

8

1

f
1

D5
æ

è
çç

ö

ø
÷÷

1 2
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Ex 5. Pipe flow. Solution
Iteration step 2:

ks = 0.3 x 10-3 [m]  ks/D = 1 x 10-3.

1. New guess of f. 

f2 = 0.022 (see figure on previous slide) 
Re1 =  1.72 x 105

2. New guess of Q from the Darcy-Weisbach equation: = 0.0517 [m3 s-1]

3. New guess of Re: = 1.68 x 105

Q
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Iteration step 3:

ks = 0.3 x 10-3 [m]  ks/D = 1 x 10-3.

1. New guess of f. 

f3 = 0.021 (see figure on previous slide) 
Re2 =  1.68 x 105

2. New guess of Q from the Darcy-Weisbach equation: = 0.0529 [m3 s-1]

3. New guess of Re: = 1.72 x 105

Q
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Iteration step 4:

ks = 0.3 x 10-3 [m]  ks/D = 1 x 10-3.

1. New guess of f. 

Re3 =  1.72 x 105

f
4

» f
3

= 0.021  Solution converged !

Flow regime: turbulent transition
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Ex 6. Pipe flow 
A 0.250 m3 s-1 discharge of petrol with a kinematic viscosity of 9 x 10-6 m2 s-1 is transported 
in a 10’000 m long steel pipeline with characteristic sand roughness ks = 0.00005 m. The 
total energy loss is 25 m.

1) Determine the flow regime
2) Determine the friction Darcy-Weisbach friction coefficient f
3) Determine the diameter of the pipe.
Hint: the solution makes use of the Moody-Stanton diagram or the equivalent Colebrook-
White formula

39
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Ex 6. Pipe flow. Solution
Q, hr, ks,n known  U, D, f, Re to be solved

Iteration step 1:
1. Initial guess f1. Both Re and ks/D are unknown, rendering the guess more difficult. 

2. Initial guess D1 from Darcy-Weisbach equation: = 0.61 [m]

3. Initial guess Re1: = 5.8 x 104Re
1

= 4Q

pD
1
n

f1 = 0.04 (see figure on previous slide).
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Iteration step 2:
ks/D = 0.00005 /0.61 = 0.000081. New guess of f:

f2 = 0.02 (see figure on previous slide) 
Re1 =  5.8 x 104

2. New guess D2 from Darcy-Weisbach equation: = 0.53 [m]D
2

= 8

p 2g
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3. New guess of Re: = 6.7 x 104Re
2

=
4Q

2

pDn
Iteration step 3:

ks/D = 0.00005 /0.53 = 0.00011. New guess of f: 
f2 = 0.02

Re1 =  6.7 x 104
 Solution converged !

Flow regime: smooth turbulent
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Ex 7. Pipe flow 
Siphon: A tube used to convey liquid upwards from a reservoir and then down to a 
lower level of its own accord. Once the liquid has been forced into the tube, typically by 
suction or immersion, flow continues unaided 

Case 1: All minor energy losses are neglected and the fluid considered is water at 20°.
1) Determine the discharge Q, the Darcy-Weisbach friction coefficient f, and the flow 

regime.
2) Draw the total energy line, and the potential energy line. Deduce from both the 

evolution of the pressure along the pipe.
3) Where does the minimum pressure in the pipe occur and what is its value ?
4) Is there a risk of cavitation in that point ?

Stauziel = 100 m.ü.A.
A

95 m.ü.A.

98 m.ü.A.
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z  
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1 2
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L  1

L  2

L  3

3

dD
7 m

D = 0.5 m
ks = 0.00015 m
L1 = L2 = 4 m, L3 = 8m
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Ex 7. Pipe flow. Solution

1) Determine the discharge Q, the Darcy-Weisbach friction coefficient f, and the flow regime.

• Energy budget between the free surface in the reservoir and the exit of the siphon:

h
1
+
p

1

g
+
U

1
2

2g
= h

2
+
p

2

g
+
U

2
2

2g
+h

r
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p1 = p2 = pa

U1 = 0

Q= pD2
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• The Darcy-Weisbach friction coefficient has to be determined by iteration. 
Attention: the iterative procedure is slightly different for a pipe system than 
for a single pipe reach.
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Ex 7. Pipe flow. Solution
Solution similar to procedure outlined in application example 2 of TH_Pipeflow

D, hr, ks, n known  Q, U, f, Re to be solved
Iteration step 1:

ks/D = 0.00015/0.5 = 0.00031. Initial guess of f: 

Re is unknown
f1 = 0.017 (see Ex. 5. Pipe flow).

2. Initial guess of Q from the Darcy-Weisbach equation: = 1.57 [m3 s-1]

3. Initial guess of Re: Re
1

=
4Q1

pDn
= 4.0 x 106

Water at 20°: n = 1x10-6 [m2 s-1] 

Q= pD2
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Iteration step 2:
ks/D = 0.00015/0.5 = 0.00031. New guess of f: 

Re1 =4.0 x 106
f1 = 0.017  Solution converged !

Flow regime very near rough turbulent, 
implying that f only depends on ks/D
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Ex 7. Pipe flow. Solution
2) Draw the total energy line, and the potential energy line. Deduce from both the 

evolution of the pressure along the pipe.

DL

EL hr = 1.8 [m]

U²/2g = 3.2 [m]

1

2

EL = Total energy line, E = h + p/g + U2/2 

DL = Potential energy line, p*/g = h + p/g

Datum

hp/g < 0

The relative pressure (with respect to the atmospheric pressure) is negative 
everywhere in the siphon. 

3
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Ex 7. Pipe flow. Solution

3) Where does the minimum pressure in the pipe occur and what is its value ?

The minimum relative pressure occurs in the highest point of the siphon. It is found be 
making an energy budget between the free surface in the reservoir and this point:

4) Is there a risk of cavitation in that point ?
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The absolute pressure is given by:

Where pa = 1.013 x 105 [N m-3] is the normal atmospheric pressure

 pabs,min = 3.9 [m]

As a rule of thumb, the relative pressure p/g should be larger than -7 [m], or the absolute 
pressure pabs/g should be larger than 3 [m]. This value is required because the computed 
pressure:
• Does not take into account the 3D distribution of the velocity in the pipe. Higher 

velocities may locally occur (for example due to 3D effects in the bend), leading to 
lower pressure.

• Does not take into account turbulent fluctuations, which may also lead to higher 
velocities and lower pressures. 

p
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g
=
p
a

g
+ p

g
= 1.013x105

9.81x1000
+ p

g
» 10 + p

g
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Ex 8. Pipe flow 
Siphon: A tube used to convey liquid upwards from a reservoir and then down to a 
lower level of its own accord. Once the liquid has been forced into the tube, typically by 
suction or immersion, flow continues unaided 

Case 2: Minor energy losses occur at the pipe inflow (K = 0.2), and in the two 
bends (K = 0.3 for each bend). The fluid considered is water at 20°.
1) Determine the discharge Q, the Darcy-Weisbach friction coefficient f, and the 

flow regime.
2) Draw the total energy line, and the potential energy line. Deduce from both 

the evolution of the pressure along the pipe.
3) Where does the minimum pressure in the pipe occur and what is its value ?
4) Is there a risk of cavitation in that point ?

Stauziel = 100 m.ü.A.
A

95 m.ü.A.

98 m.ü.A.
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D = 0.5 m
ks = 0.00015 m
L1 = L2 = 4 m, L3 = 8m
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Ex 8. Pipe flow. Solution

1) Determine the discharge Q, the Darcy-Weisbach friction coefficient f, and the flow regime.

• Energy budget between the free surface in the reservoir and the exit of the siphon:

∆h = h1-h2 = 5m

U2 = U = Q/S

h
r

= f
Dl
D

U 2

2g

p1 = p2 = pa

U1 = 0

• The Darcy-Weisbach friction coefficient has to be determined by iteration. 
Attention: the iterative procedure is slightly different for a pipe system than 
for a single pipe reach.
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Ex 8. Pipe flow. Solution
Solution similar to procedure outlined in application example 2 of TH_Pipeflow

D, hr, ks, n known  Q, U, f, Re to be solved
Iteration step 1:

ks/D = 0.00015/0.5 = 0.00031. Initial guess of f: 

Re is unknown
f1 = 0.017 (see Ex. 5. Pipe flow).

2. Initial guess of Q from the 
Darcy-Weisbach equation: = 1.27 [m3 s-1]

3. Initial guess of Re: Re
1

=
4Q1

pDn
= 3.2 x 106

Water at 20°: n = 1x10-6 [m2 s-1] 

Iteration step 2:
ks/D = 0.00015/0.5 = 0.00031. New guess of f: 

Re1 =3.2 x 106
f1 = 0.017  Solution converged !

Flow regime very near rough turbulent, 
implying that f only depends on ks/D
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Stauziel = 100 m.ü.A.
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U²/2g = 2.1 [m]

hr +Σhm= 2.9 [m]

hp/g < 0
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Ex 8. Pipe flow. Solution
2) Draw the total energy line, and the potential energy line. Deduce from both the 

evolution of the pressure along the pipe.

2

EL = Total energy line, E = h + p/g + U2/2 

DL = Potential energy line, p*/g = h + p/g

Datum

The relative pressure (with respect to the atmospheric pressure) is negative 
everywhere in the siphon. 

3

hm,inflow = 0.43 [m]
1

hm,bend,1 = 0.64 [m]

hm,bend,2 = 0.64 [m]

DL

EL
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Ex 8. Pipe flow. Solution

3) Where does the minimum pressure in the pipe occur and what is its value ?

The minimum relative pressure occurs in the highest point of the siphon. It is found be 
making an energy budget between the free surface in the reservoir and this point:

4) Is there a risk of cavitation in that point ?

= -6.4 [m]

The absolute pressure is given by:

Where pa = 1.013 x 105 [N m-3] is the normal atmospheric pressure

 pabs,min = 3.6 [m]
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Note that the most conservative estimation of the minimum pressure is obtained by 
taking also into account the minor energy losses in the second bend

Taking into account the minor energy losses slightly increases the cavitation risk in this 
particular case. The rule of thumb that p/g should be larger that -7 [m] is still marginally 
satisfied, and the risk of cavitation cannot be neglected.
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