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Exercises
Euler momentum theorem – Bernoulli‘s equation – Open-channel flow
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Ex 1. Euler momentum theorem
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Opponitz Kraftwerk , Wien Energie, Austria

• r = 1000 [kg m-3]

• m = 1.0 x 10-3 [kg m-1 s-1]

Input data:

• Q = 8 [m3 s-1]

• D = 1 [m]

• ∆h = 115 [m]

• ∆l = 160 [m]

• Penstock in galvanized steel: ks = 0.15 x 10-3 [m]

Let us consider again the penstock pipe of the Opponitz power plant. Let us consider again the 
case detailed in TH_PipeFlow, where a discharge of Q = 8 [m3 s-1] is obtained by partially closing 
a valve that is situated at the downstream end of the penstock.

Imagine now that the penstock pipe is not straight, but has a change in direction of 75 [°] near 
its downstream end. Assume that the last 20 [m] of the penstock, including the bend and the 
valve, are flat.

Determine the force induced by the flow on the pipe due to this change in direction. Determine 
the total force, the downslope component of the force, and the transverse component of the 
force for two configurations: the first with the bend just upstream of the valve and the second 
with the bend just downstream of the valve. For what configuration is the force smallest ?

75[°]

We have considered this example already in TH_PipeFlow
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Ex 2. Euler momentum theorem
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A horizontal jet is generated by pumping water out of a large reservoir. The discharge of the 
jet is Q = 0.1 [m3 s-1] and the jet diameter is D = 0.15 [m]. The free surface of the reservoir 
is situated 10 [m] below the jet axis. Energy losses in the system can be neglected. 

1. Determine the energy head introduced by the pump in the system.
2. How many bolts are required to anchor the pump, if one bolt has an admissible 

shear force of 25 [N] ?

Anchor bolts

Pump
D = 0.15 [m]

10 [m]
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Ex 2. Euler momentum theorem
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Water (ρ = 1000 [kg m-3]) is pumped out of a pipe with cross-sectional area A1 = 0.2 [m2] at a 
velocity of V1 = 10 [m s-1] before it hits a stationary plate that is tilted at an angle α = 60 [°] 
relative to the incoming jet. The incoming jet is split into two outgoing jets. Assume that the 
effects of gravity can be neglected. The jet is surrounded by air at atmospheric pressure. The 
figure pictures the top view of the jet exiting the pipe and hitting the plate.

1. Prove that the magnitudes of the outgoing velocities V2 and V3 have to be equal to the 
magnitude of the velocity V1 of the incoming jet using Bernoulli’s theorem.

2. Choose a control volume and calculate the x- and y-component of the total force F the jet 
exerts on the plate. Assume that A2 = 2A3.
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Ex 1. Bernoulli’s equation
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[https://aquariumdepot.com]

Pistol Shrimp = Knalkrebse
oder Pistolenkrebse

We have discussed in TH_Introduction the 
very original and surprising hunting strategy 
of the pistol shrimp. By quickly closing its 
clamp, the pistol shrimp generates a high 
velocity jet, which leads to the generation of 
a cavitation bubble. The pressure shock 
generated by the subsequent explosion of 
the cavitation bubble kills the pray.

Imagine that the pistol shrimp is at the bottom of a 0.5 [m] deep aquarium filled with 
water at 20 [°]. Estimate the velocity of the jet that the pistol shrimp creates.
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Ex 2. Bernoulli’s equation. Torricelli’s formula (1644)
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Consider a reservoir of constant surface area Sres filled 
with a fluid of density r [kg m-3]. An overflow is used 
to maintain the fluid at a constant level D [m] in the 
reservoir. The fluid flows out of the reservoir in the 
form of a jet through an opening in the bottom of 
surface area S [m2].

D

U 

1. Determine the velocity U [m s-1] in the jet.
2. Determine the discharge flowing out through the bottom opening.
3. Consider now the emptying of the reservoir. Assume that S << Sres, such that the 

variation of the free surface in the reservoir is very slow, and the problem can be 
considered as quasi-stead. Determine the time required to empty the reservoir.

Sres

S
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Ex 3. Bernoulli’s equation. The Venturi tube (~1800)
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A Venturi tube is a pipe that consists of a contraction followed by an expansion (Figure). 
Demonstrate that velocity can be derived from the pressure difference between the 
upstream section and the contracted section.

Note that energy losses are typically negligible in converging flow, whereas they can be 
substantial in diverging flows, especially when flow separates from the walls and 
recirculation zones form. For that reason, the contraction in Venturi tubes is typically 
rather abrupt, whereas the divergence is typically more gradual.

Source: Wikipedia

Flow

Venturi tube on the hull of an airplane 
for velocity measurements

∆p*/g

U1 U1U2

Venturi tube
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Ex 1. Open-channel flow
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Consider a reach on the Danube near Vienna.

1. Schematize the geometry of the river system and justify your schematization. 

In practice, it is important to treat problems with the appropriate level of complexity. For example, 
what level of complexity do you retain in the schematization of the river shape ? Can the cross-
sectional shape be approximated by a trapezium ? Or is the effect of the banks negligible and can it be 
approximated by a rectangle, which simplifies calculations. Can the bottom slope be taken as constant 
in the considered reach ?

2. Choose a discharge Q (for example the mean annual discharge).

3. Draw the specific energy curves for Q.

4. Compute the critical flow depth (Dc) and the corresponding specific energy (Es,c) for this Q
and indicate them on the specific energy curve.

5. Make an estimation of the friction factor and justify your estimation.

6. Compute the normal flow depth (Dn) for Q, and represent it on the specific energy curves.

7. Define the flow regime.

8. Due to construction works, the width has to be reduced by 50m over a length of 500m. 
Based on specific energy considerations, compute the local variation in the elevation of the 
water surface resulting from this width reduction.

Solve the exercise for 2 cases: a subcritical river and a supercritical one
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Ex 2. Open-channel flow
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Consider the same reach on the Danube as in Ex. 1 and the same discharge. Assume that the 
reach has a constant geometry and is sufficiently long for normal flow conditions to establish. 
A sluice gate is installed over the entire width that locally reduces the flow depth to 0.5 [m]. 

1. Draw schematically the backwater curves upstream and downstream of the sluice gate. 
Indicate in your scheme the normal and critical flow depths, and name the types of 
backwater curve that occur.

2. Compute the backwater curves upstream and downstream of the sluice gate.

3. If a hydraulic jump occurs, determine the conjugate depths and determine its location 
(distance from the sluice gate). The length of the hydraulic jump can be neglected.
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Ex 3. Open-channel flow
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Consider a mountain river with the following characteristics:
• A longitudinal bottom slope of 0.02.
• A trapezoidal cross-section with bottom width of 15 [m], banks inclined at 45[°], and 

bank height of 2 [m] (Figure).
• A roughness coefficient according to Manning-Strickler of Ks = 30 [m1/3 s-1].

1. Compute the hydraulic capacity of the river, which is also called the bankfull discharge. 
Assume that flow is normal.

2. Compute the normal and critical flow depths for the bankfull discharge.
3. Identify the flow regime.
4. Draw the specific energy curve for the bankfull discharge and indicate the normal and 

critical flows. Consider a depth range of 0 to 6 m for drawing the curve.
5. Compute the bed shear stress for the bankfull discharge.
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Ex 4. Open-channel flow
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Consider the same mountain river as in Ex. 3. Due to the crossing of a highway bridge, 
the banks are locally vertical, but the bottom width is maintained at 15 m, leading to a 
local constriction of the flow (Figure).

1. Draw the specific energy curve in the constricted reach for the bankfull discharge 
identified in Ex. 3. Superpose this on the specific energy curve drawn in Ex. 3.

2. By how much do the banks have to be raised in order to maintain the hydraulic capacity, 
i.e. in order to avoid inundations.

3. A hydraulic jump will occur upstream of the constriction. Compute the conjugate flow 
depths (i.e. flow depths just upstream and downstream of the hydraulic jump) and 
compute the energy losses in the hydraulic jump.

4. Draw schematically the longitudinal profiles of the bed, water surface and energy line in 
the reach upstream of the constriction; indicate also the normal and critical flow depths.

5. Illustrate the evolution of the water depth on the specific energy curve.
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Ex 5. Open-channel flow
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We have seen in TH_OpenChannelFlow_1 that discharge can be measured by imposing 
critical flow conditions. We have treated the example of imposing critical flow by 
means of a bottom step (the relevant slide is reproduced in the figure below). Develop 
explicitly the relation Q = Q (Dupstream).  

36 
Bottom 

∆z 

Energy line 

Water surface Dc 

Es,c 

Critical flow: 
Dc = Dc(Q)   and  Q = Q(Dc) 

Es,c = Es,c(Q) and Q = Q(Es,c) 

Es,upstream≈Dupstream 

Es,c ≈ Eupstream - ∆z ≈ Dupstream - ∆z 

 
à Q = Q(Dupstream) 
 

Discharge measurements based on rela on Q-Dc 

Exercise from the lecture TH_Hydrostatics
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Ex 6. Open-channel flow
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A discharge of Q = 12 [m3 s-1] is flowing in a 2 [m] wide rectangular channel. The 
Manning-Strickler roughness coefficient is estimated at Ks = 40 [m1/3 s-1]. The flow 
regime will obviously depend on the channel slope. For a mild slope the flow will tend to 
be subcritical, whereas it will tend to be supercritical for a steep slope. Determine the 
critical slope, i.e. the one that differentiates between mild-slope (M-type backwater 
curves) and steep-slope (S-type backwater curves) characterizations of the channel.

Exercise from the lecture TH_Hydrostatics
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