

PRUFU	JNG	am	18.	12.	.20	14

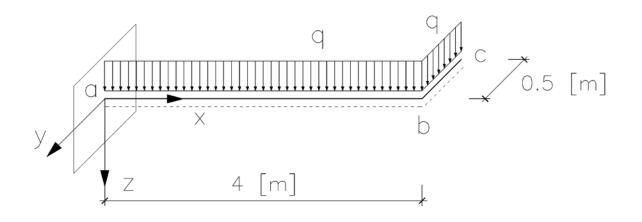
Name

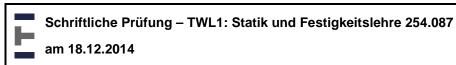
Matrikelnummer

Note:	SCHRIFTLICHE PRÜFUNG AUS					
	Tragwerkslehre 1 – Statik und Festigkeitslehre					
	254.087					
Punkte:	Kein Rot verwenden					
	Eigengewichte sind generell zu vernachlässigen, Die Dehnsteifigkeit $\mathit{EA} = \infty$ Prüfungsangaben sind abzugeben					

Gegeben:

/30 P


Stabzug: rechteckiges Hohlprofil, S235 $a \times b = 250 \times 150 \ [mm]; \ s = 8 \ [mm]$


1. BEISPIEL: Kragarm

Einwirkung: q = [7 kN/m]

Gesucht:

- a) Berechnen Sie die Auflagerreaktionen.
- b) Zeichen Sie den **Biegemomenten-** und **Torsionsmomentenverlauf**.
- c) Ermittlung der Biegenormal- und Torsionsschubspannungen an der Einspannstelle "a".

Seite

2/4

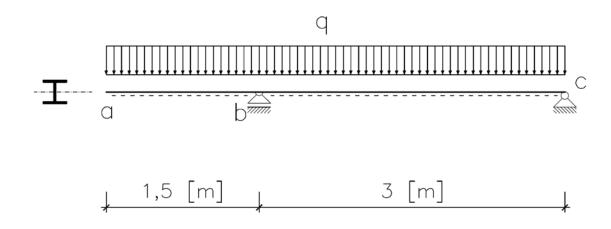
A

/35 P

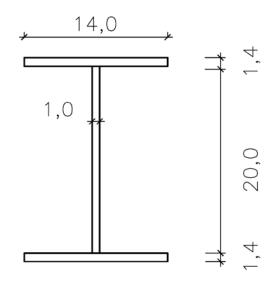
2. BEISPIEL: Durchlaufträger

Gegeben:

Träger: geschweißtes I-Profil It. Zeichnung, S235


Einwirkung: q = 65[kN/m]

Hinweise:


Falls die Belastung des Systems in Punkt a.) und b.) nicht ermittelt werden konnte, darf für c.) $|M_{max}| = 70 \ [kNm], |Q_{max}| = 120 \ [kN]$ angenommen werden.

Gesucht:

- a) Berechnen Sie die Auflagerreaktionen.
- b) Zeichen Sie den **Momenten-** und **Querkraftverlauf**.
- c) Berechnen Sie die **Durchbiegung** in Feldmitte und am Kragarmende
- d) Führen Sie den Biegenormal- und den Schubspannungsnachweis an der maßgebenden Stelle

Querschnitt [cm]

Schriftliche Prüfung – TWL1: Statik und Festigkeitslehre 254.087

Seite

3/4

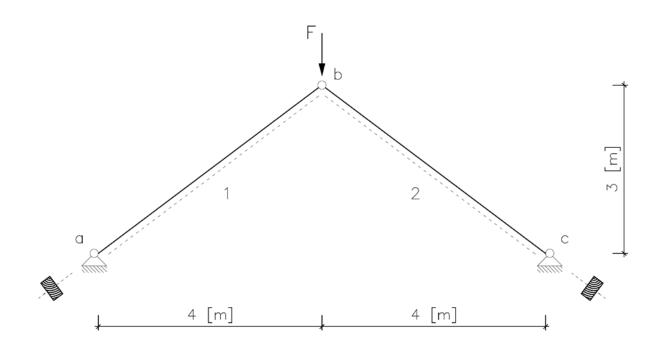
A

/25 P

3. BEISPIEL: Stabilität

Gegeben:

Stab 1 16/20, GL32 Stab 2 16/24, GL32


Einwirkung: $F_m = 80 [kN]$

Hinweis:

• Die Stütze ist in beide Richtungen gleich gehalten.

Gesucht:

- a) Ermitteln Sie die Schlankheit von Stab 2 für beide Achsen.
- b) Ermitteln Sie die Knickzahlen.
- c) Führen sie den **Stabilitätsnachweis** nach **Eurocode** für **beide Achsen**.
- d) Ermitteln Sie die **kritische Eulerlast** für **beide** Achsen.

Schriftliche Prüfung – TWL1: Statik und Festigkeitslehre 254.087

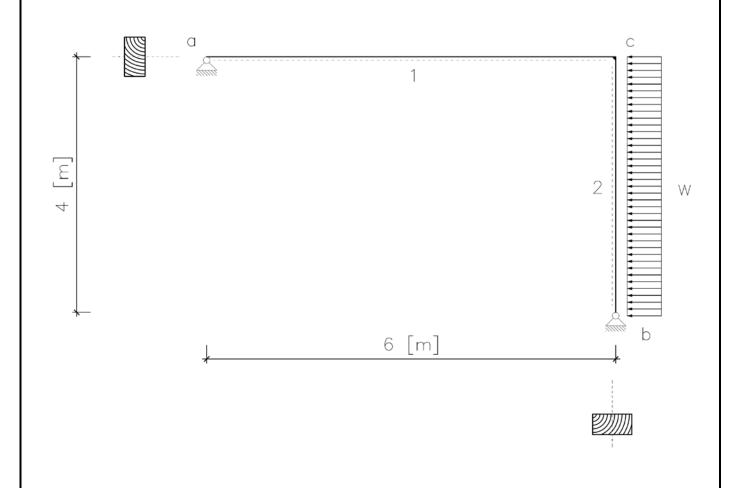
Seite

4/4

A

/30 P

4. BEISPIEL: Holzrahmen


Gegeben:

Stab 1: 14/14, C24 Stab 2: 14/24, C24

Einwirkung: w = 7 [kN/m]

Gesucht:

- a) Berechnen Sie die **Auflagerreaktionen** des Rahmens.
- b) Berechnen und zeichnen Sie den **Momentenverlauf.**

