Fundamentals of Numerical Thermo-Fluid Dynamics 322.061
Examples for home preparation

Exercise 3: Stability of Finite Difference schemes

To be presented on May 29, 2019

3.1) Let us consider a convection equation of passive scalar
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which we discretize with second order central differences in space and Lax-Friedrichs
method in time:
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Investigate the stability of this scheme using von Neumann analysis. Provide the
conditions of stability if relevant.

3.2) Consider a semi-discrete problem

Show that Lax-Friedrichs method
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is equivalent to stabilizing the explicit Euler scheme
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by adding an artificial diffusion
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3.3)
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Hint: Compute the error of the approximation u} ~ %(u? o tuly)

Implement the discretization ([2) in MatLab in the form

unrl — Ayh (7)

Take z1 = 0,2y = 1, Az = 0.05, At = 0.02,¢ = 1. Apply the boundary condition
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and the one-sided difference
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Assuming an initial condition
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u(gj’to = O) =e 008 (8)

compute the solution at ¢t = 0.2. Then show that one can solve equation with the
method of characteristics to obtain the exact solution
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u(x’ t) =e 0.08 (9)
and compare your numerical result with this analytical solution. Explain your ob-
servations.

Hint: Consider question 3.2) for interpretation.

Bonus: Try to use different values of Az, At to verify the results of questions 3.1)
and 3.2)
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3.4) Discretize the equation:
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2sin(mz) cos(my) , z,y € [0,1] (10)

and write it in matrix and vector form (no programming required) using a second
order central difference scheme for both the variables, considering the boundary con-

ditions:

Use Az = 0.25 and Ay = 0.2.

(a) (z,0) = sin(mz),

(b) (x,1) = —sin(nx),

(©) (0.) =0 (”)
(d) (1,y) =0,



