Fundamentals of Numerical Thermo-Fluid Dynamics 322.061 Examples for home preparation

Exercise 3: Stability of Finite Difference schemes

To be presented on May 29, 2019

3.1) Let us consider a convection equation of passive scalar

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x} \tag{1}
\end{equation*}
$$

which we discretize with second order central differences in space and Lax-Friedrichs method in time:

$$
\begin{equation*}
\frac{u_{j}^{n+1}-\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)}{\Delta t}=-c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}+O\left(\Delta t, \Delta x^{2}\right) \tag{2}
\end{equation*}
$$

Investigate the stability of this scheme using von Neumann analysis. Provide the conditions of stability if relevant.
3.2) Consider a semi-discrete problem

$$
\begin{equation*}
\frac{\partial u_{j}}{\partial t}=f_{j}(\vec{u}) \tag{3}
\end{equation*}
$$

Show that Lax-Friedrichs method

$$
\begin{equation*}
\frac{u_{j}^{n+1}-\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)}{\Delta t}=f_{j}\left(\overrightarrow{u^{n}}\right) \tag{4}
\end{equation*}
$$

is equivalent to stabilizing the explicit Euler scheme

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=f_{j}^{n}\left(\overrightarrow{u^{n}}\right) \tag{5}
\end{equation*}
$$

by adding an artificial diffusion

$$
\epsilon=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{\partial^{2} u}{\partial x^{2}}+\left[\begin{array}{c}
\text { high order } \tag{6}\\
\text { terms }
\end{array}\right]
$$

Hint: Compute the error of the approximation $u_{j}^{n} \approx \frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)$
3.3) Implement the discretization (2) in MatLab in the form

$$
\begin{equation*}
u^{\overrightarrow{n+1}}=\mathbf{A} \overrightarrow{u^{n}} \tag{7}
\end{equation*}
$$

Take $x_{1}=0, x_{N}=1, \Delta x=0.05, \Delta t=0.02, c=1$. Apply the boundary condition

$$
u_{1}^{n+1}=u_{1}^{n} \quad \text { at } \quad x_{1}=0
$$

and the one-sided difference

$$
u_{N}^{n+1}=\frac{c \Delta t}{\Delta x} u_{N-1}^{n}+\left(1-\frac{c \Delta t}{\Delta x}\right) u_{N}^{n} \quad \text { at } \quad x_{N}=1
$$

Assuming an initial condition

$$
\begin{equation*}
u\left(x, t_{0}=0\right)=e^{-\frac{(x-0.5)^{2}}{0.08}} \tag{8}
\end{equation*}
$$

compute the solution at $t=0.2$. Then show that one can solve equation (1) with the method of characteristics to obtain the exact solution

$$
\begin{equation*}
u(x, t)=e^{-\frac{(x-c t-0.5)^{2}}{0.08}} \tag{9}
\end{equation*}
$$

and compare your numerical result with this analytical solution. Explain your observations.

Hint: Consider question 3.2) for interpretation.
Bonus: Try to use different values of $\Delta x, \Delta t$ to verify the results of questions 3.1) and 3.2)
3.4) Discretize the equation:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-\pi^{2} \sin (\pi x) \cos (\pi y), x, y \in[0,1] \tag{10}
\end{equation*}
$$

and write it in matrix and vector form (no programming required) using a second order central difference scheme for both the variables, considering the boundary conditions:
(a) $(x, 0)=\sin (\pi x)$,
(b) $(x, 1)=-\sin (\pi x)$,
(c) $(0, y)=0$,
(d) $(1, y)=0$,

Use $\Delta x=0.25$ and $\Delta y=0.2$.

