Exercise 6, Deadline: Mon, Dec 14th, 10:00
Problem. 6.1 VU RF Techniques 2015/2016
15-dec-2015

Heterodyne receiver, equidistant channel spacing:

the antenna „looks" into an urban area, 50 ohm system, antenna and all stages of the chain matched.
We pick out three channels for further discussion: channel 10 shall be the desired channel (active channel, "Nutzkanal"). Two interferers are in channel 11 (adjacent channel), and in channel 12 respectively, each of the interferers has -56 dBm at the antenna output.

a) Antenna signal input power in channel 10 is 1 pW : calculate the SNR at the IF-amplifier output.
b) Calculate the over all noise figure $\mathbf{N F}_{\text {Total }}$ of the complete receiver chain. What are the "additional" noise figures $\mathbf{N F}_{\text {ADD }}$ from stage to stage (all in dB)?
c) Calculate the interferer power levels at the IF amplifier output, if the LO is tuned to select channel 10 (the desired channel). See textbook 2015, page 125, Fig. 4.24: adjacent channel attenuation down from "OdB", general insertion loss for all channels indicated separately.
d) Draw the double-log sketches of $\log P_{\text {out }}$ versus $\log P_{\text {in }}$ for the preamplifier, for the mixer, and for the IF-amplifier. Draw the traces of $1^{\text {st }}$ order and $3^{\text {rd }}$ order products powers, and mark the $3^{\text {rd }}$ order Intercept Points IP3. Calculate the total IP3 тот and indicate it in the sketch.
e) Draw a sketch of the power level diagram of the receiver chain for noise, signal, interferers, and intermodulation products, all powers in dBm .

Remark: for the calculation of absolute noise powers consider the bandwidth reduction !!! Absolute noise power $=($ noise power density $) \times($ filter bandwidth $)$

Heterodyne Receiver, $\mathbf{2}^{\text {nd }}$ order and $3^{\text {rd }}$ order nonlinearity" ! !!!
The following frequencies in a channel system are active at $-\mathbf{3 0 d B m}$ each:
$\mathrm{f} 1=1850 \mathrm{MHz}, \quad \mathrm{f} 2=1853 \mathrm{MHz}, \quad \mathrm{f} 3=1854 \mathrm{MHz}, \mathrm{f} 4=1859 \mathrm{MHz}, \quad \mathrm{f} 5=1862 \mathrm{MHz}$.
RF-preamplifier, GAIN $=30 \mathrm{~dB}, \quad$ 2nd AND 3rd order nonlinearities!!
3 rd order nonlinearities: dual beat intermodulation distance $I_{3 \text { rd order, dual beat }}=40 \mathrm{~dB}$ at -30 dBm signal input.
2nd order nonlinearities: $\mathbf{I P}_{\mathbf{2}}=(0 \mathrm{dBm} /+30 \mathrm{dBm})$.
Mixer, ideal multiplier producing difference (absolute value of the differences!), and sum frequencies, NO intermodulation, Conversion Gain $=20 \mathrm{~dB}$, cross talk from port 1 to port $3,|\mathrm{~S} 31|=-20 \mathrm{~dB}$, all ports DC-2GHz.

IF-filter: Pass Band: lower limit ($\mathbf{1 , 0} \mathbf{~ M H z}$) to upper limit ($\mathbf{7 , 0} \mathbf{~ M H z}$), i.e. total bandwidth: $\mathbf{6 M H z}$

a) RF-preamplifier output: draw the power spectrum (power versus frequency) of ocurring $3^{\text {rd }}$ order (i.e. intermodulation) products, that can be observed in the frequency range from 1838 MHz to 1874 MHz).
b) RF-preamplifier output: calculate the distance between the power of $2^{\text {nd }}$ order combination products and the power of the desired $1^{\text {st }}$ order (i.e. signal) power for the given signal input power.
b) Some of the $2^{\text {nd }}$ order products from the RF-preamplifier propagate to the mixer output without frequency conversion, but simply via cross talk across the mixer ports 1 and 3 , and may fit into the IF-filter passband. At the mixer output port: give a frequency example, how many dB are the levels of those $2^{\text {nd }}$ order products below the levels of $3^{\text {rd }}$ order (i.e. intermodulation) products?

