The input of an RF amplifier module operating at $f_c = 1$ GHz shows a reflection coefficient $\Gamma = 0.3 - j0.5$. By means of two 5.5 pF capacitors, placed along a lossless 50 Ω line, the input of the entire circuit shall be matched to 50 Ω .

By using the Smith-chart determine the transmission line lengths l_1 und l_2 (as a ratio of the wavelength λ)!

WIEN

EMCE

page 1

50 Ω line (with length 0.3 λ) at the input can be ignored...

...because it has the same impedance as the desired input impedance.

Solution approach:

- 1. divide the network into two parts by a reference plane located in between the adjustable elements
- 2. determine the set of admittances y_3 which can be matched to $y_1 = 1$ (equ. 50 Ω) by the left-hand side network (5.5pF + line 1)
- 3. determine the set of admittances y_3 which can be realized by the right-hand side network (5.5pF + line 2 + amplifier)
- 4. intersect both sets to find a solution for y_3
- 5. based on the solution for y_3 determine the lengths of line 1 and line 2

<u>Info</u>: Because all lines (of which the reference planes are shifted along) have a wave impedance of 50 Ω , the Smith-chart used for the solutions is referenced to 50 Ω as well.

WIEN

EMCE

page 2

The following notation will be used in the Smith-charts:

- impedances are marked in **BLUE**
- admittances are marked in RED
- construction steps are marked in ORANGE (sometimes other colors might also be used for clarity)
- the reference impedance is indicated in to upper left corner
- pastel colors are used for preceding construction steps, impedances, and admittances
- reference planes are denoted by (1),(2),(3),(4) and (5);
 they are located at the following positions and use the following orientations:

RF Techniques

0

We start by determining the set of admittances y_3 which can be matched to $y_1 = 1$ (equ. 50 Ω) by the network marked in green (5.5pF + line 1)...

page 4

page 5

H. Arthaber

5. Matching of an RF Amplifier Module - Reference Solution

5.5 pF **∔** 5.5 pF (5) $(3) \rightarrow$ (4)≯ $\Gamma_5 = 0.3 - j0.5$ Solution for left part (5.5pF + line 1): enter y₁ (use admittance plane because when shifting the reference plan to y_2 we have to deal with a parallel connection of the 5.5pF capacitor)

 50Ω line

length l_2

 50Ω line

length l_{t}

page 6

page 7

© 2017/EMCE

H. Arthaber

5. Matching of an RF Amplifier Module - Reference Solution

(4)≯ $\Gamma_5 = 0.3 - j0.5$ Solution for left part (5.5pF + line 1): enter y_1 shift reference

(5)

 50Ω line

length l₂

∔ 5.5 pF

- plane y_1 to y_2 by removing the 5.5pF capacitor
- shift reference plane y_2 to y_3 (this is done by rotating y_2 towards the load along a circle)
- any admittance on the circle y_3 can be matched to $y_1 = 0$ by choosing an appropriate line length l₁

_

0

Next, we determine the set of reflection coefficients y_3 which can be realized by the network marked in green (5.5pF + line 2 + amplifier)...

page 8

RF Techniques

page 9

page 10

© 2017/EMCE

H. Arthaber

5. Matching of an RF Amplifier Module - Reference Solution

(5.5pF + line 2 + amp): enter y_5 shift reference plane y_5 to y_4 (this is done by rotating y_5 towards the generator along a circle) any admittance on the circle y_4 can be

 50Ω line

length l_2

(5)

 $\Gamma_{5} = 0.3 - j0.5$

≒5.5 pF

realized by choosing different line lengths l_2

© 2017/EMCE H. Arthaber

page 11

RF Techniques

* The Smith-chart is a conformal mapping between Γ -plane (reflection coefficients) and the Y/Z-plane (= it preserves angles). Circles will be transformed into circles. When adding constant imaginary values to the reflection coefficient this corresponds to a parallel movement of the circle in Y-plane and, therefore, results in a circle in the Γ -plane again.

Now, as we have solutions for y_3 based on the left and right half of the circuit, we determine a y_3 which can be matched by the left circuit to 50 Ω and can be realized by the right one...

page 12

© 2017/EMCE H. Arthaber

RF Techniques

page 13

Next, as we know the value y_3 we get back to the solution of the left-hand circuit and determine the length of line 1...

page 14

RF Techniques

© 2017/EMCE H. Arthaber

page 15

H. Arthaber

5. Matching of an RF Amplifier Module - Reference Solution

Now, we determine the length of line 2 by entering the found y_3 value in the solution of the circuit's right half...

page 16

RF Techniques

© 2017/EMCE H. Arthaber

 $(3) \Rightarrow (5) \Rightarrow$ $(4) \Rightarrow \Gamma_5 = 0.3 - j0.5$ $(5) \Rightarrow \Gamma_5 = 0.3 - j0.5$ $(4) \Rightarrow \Gamma_5 = 0.3 - j0.5$ $(5) \Rightarrow \Gamma_5 = 0.3 - j0.5$

 50Ω line

length l_2

- solution for the right circuit half determine y₄ by subtracting* y_C from y₃ In case you forgot:
- $y_{C} = \frac{z_{0}}{z_{C}} = j\omega C Z_{0}$ = +j1.73

page 17

RF Techniques

© 2017/EMCE H. Arthaber * You need to subtract y_c from y_3 out of the following reason: When measuring y_3 the capacitor is included in the circuit. But when measuring y_4 the capacitor needs to be removed. / Or think the other way round: If you know y_4 you would have to add y_c in order to determine y_3 . As we know y_3 already, y_c needs to be subtracted.

page 18

© 2017/EMCE

H. Arthaber

5. Matching of an RF Amplifier Module - Reference Solution

0

That's it, you survived the tutorial!

Assoc. Prof. Dr. Holger Arthaber

Email: holger.arthaber@tuwien.ac.at

RF Techniques

Questions?

Room: CF0131

page 19

© 2017/EMCE H. Arthab<u>er</u>