The input of an RF amplifier module operating at $f_{c}=1 \mathrm{GHz}$ shows a reflection coefficient $\Gamma=0.3-j 0.5$. By means of two 5.5 pF capacitors, placed along a lossless 50Ω line, the input of the entire circuit shall be matched to 50Ω.

By using the Smith-chart determine the transmission line lengths l_{1} und l_{2} (as a ratio of the wavelength λ)!

50Ω line (with length 0.3λ) at the input can be ignored...

...because it has the same impedance as the desired input impedance.

Solution approach:

1. divide the network into two parts by a reference plane located in between the adjustable elements
2. determine the set of admittances y_{3} which can be matched to $y_{1}=1$ (equ. 50Ω) by the left-hand side network ($5.5 \mathrm{pF}+$ line 1)
3. determine the set of admittances y_{3} which can be realized by the right-hand side network ($5.5 \mathrm{pF}+$ line $2+$ amplifier)
4. intersect both sets to find a solution for y_{3}
5. based on the solution for y_{3} determine the lengths of line 1 and line 2

Info: Because all lines (of which the reference planes are shifted along) have a wave impedance of 50Ω, the Smith-chart used for the solutions is referenced to 50Ω as well.

The following notation will be used in the Smith-charts:

- impedances are marked in BLUE
- admittances are marked in RED
- construction steps are marked in ORANGE (sometimes other colors might also be used for clarity)
- the reference impedance is indicated in to upper left corner
- pastel colors are used for preceding construction steps, impedances, and admittances
- reference planes are denoted by (1),(2),(3),(4) and (5); they are located at the following positions and use the following orientations:

We start by determining the set of admittances y_{3} which can be matched to $y_{1}=1$ (equ. 50Ω) by the network marked in green (5.5pF + line 1) ...

TU
5. Matching of an RF Amplifier Module - Reference Solution

5. Matching of an RF Amplifier Module - Reference Solution

RF Techniques

$$
Z_{0}=50 \Omega
$$

5. Matching of an RF Amplifier Module - Reference Solution

RF Techniques

page 7


```
    5. Matching of an RF Amplifier Module - Reference Solution


Next, we determine the set of reflection coefficients \(y_{3}\) which can be realized by the network marked in green (5.5pF + line \(2+\) amplifier)...

TU
5. Matching of an RF Amplifier Module - Reference Solution

\section*{5. Matching of an RF Amplifier Module - Reference Solution}

\section*{RF Techniques}


Solution for right part (5.5pF + line \(2+\mathrm{amp}\) ): enter \(y_{5}\)
- shift reference plane \(\boldsymbol{y}_{5}\) to \(\boldsymbol{y}_{4}\) (this is done by rotating \(y_{5}\) towards the generator along a circle)
any admittance on the circle \(y_{4}\) can be realized by choosing different line lengths \(l_{2}\)

\section*{5. Matching of an RF Amplifier Module - Reference Solution}
page 11
© 2017/EMCE H. Arthaber


Solution for right part (5.5pF + line \(2+\mathrm{amp}\) ):
enter \(y_{5}\)
shift reference
plane \(y_{5}\) to \(y_{4}\)
add the 5.5 pF capacitor's admittance in order to
determine the set of possible \(\boldsymbol{y}_{3}{ }^{\text {'s }}\) - By knowing that this will result in a circle*, three arbitrary points on the \(y_{4}\) circle are chosen, the capacitor's admittance is added, and the \(y_{3}\) circle is constructed then
* The Smith-chart is a conformal mapping between 「-plane (reflection coefficients) and the \(\mathrm{Y} / \mathrm{Z}\)-plane (= it preserves angles). Circles will be transformed into circles. When adding constant imaginary values to the reflection coefficient this corresponds to a parallel movement of the circle in \(Y\)-plane and, therefore, results in a circle in the \(\Gamma\)-plane again.

Now, as we have solutions for \(y_{3}\) based on the left and right half of the circuit, we determine a \(y_{3}\) which can be matched by the left circuit to \(50 \Omega\) and can be realized by the right one...


Next, as we know the value \(y_{3}\) we get back to the solution of the left-hand circuit and determine the length of line \(1 . .\).

\section*{5. Matching of an RF Amplifier Module - Reference Solution}

\section*{RF Techniques}
page 15

```

5. Matching of an RF Amplifier Module - Reference Solution

Now, we determine the length of line 2 by entering the found y_{3} value in the solution of the circuit's right half...

5. Matching of an RF Amplifier Module - Reference Solution

$$
Z_{0}=50 \Omega
$$

* You need to subtract y_{C} from y_{3} out of the following reason: When measuring y_{3} the capacitor is included in the circuit. But when measuring y_{4} the capacitor needs to be removed. / Or think the other way round: If you know y_{4} you would have to add y_{C} in order to determine y_{3}. As we know y_{3} already, y_{C} needs to be subtracted.

5. Matching of an RF Amplifier Module - Reference Solution

RF Techniques

$Z_{0}=50 \Omega$

That's it, you survived the tutorial!

Questions?

Assoc. Prof. Dr. Holger Arthaber
Email: holger.arthaber@tuwien.ac.at
Room: CF0131

