The following circuit is to transform the load impedance ZL into the given input impedance.

Use the Smith-Chart to determine the transformer's winding ratio and the line length (in fractions of the wavelength)!

Find the solution with the shortest possible transmission line length!

WIEN

EMCE

© 2017/EMCE H. Arthaber

•

The following notation will be used in the Smith-charts:

- impedances are marked in **BLUE**
- admittances are marked in RED
- construction steps are marked in ORANGE (sometimes other colors might also be used for clarity)
- the reference impedance is indicated in to upper left corner
- pastel colors are used for preceding construction steps, impedances, and admittances
- reference planes are denoted by (1),(2),(3);
 they are located at the following positions and use the following orientations:

page 2

© 2017/EMCE H. Arthaber

•

How to handle a variable transformer in the Smith-chart?

→ The impedance Z_L is transformed to $Z_2 = \frac{1}{n^2} Z_L$. → The possible values of Z_2 form a straight line in the Z-plane:

We know from other examples:

→ Re{Z₂} Circles or lines (which are infinite radius circles) always transform into circles!

Thus, we expect an arc in the Smith-chart going through

- z = 0 ($\Gamma = -1$), short-circuit
- $z = \infty j\infty$ ($\Gamma = +1$), open
- $z = z_L$, normalized Z_L impedance

page 3

© 2017/EMCE H. Arthaber

EMCE

H. Arthaber

Get the transformation ratio n:

(1)→

 $(2)^{-}$

n = ?

1}{n

 $Z_{L} = (35 - j25) \Omega$

Select solution $z_{2,A}$ as it results in the shorter line length (see next slide for *line length*) **Read impedance** z₂=0.092-j0.066 and calculate

$$n=\sqrt{\frac{z_1}{z_2}}=\underline{2.757}$$

Info: There is no need to do a complex valued division – it is enough to compare either real- or imaginary-parts!

RF Techniques

RF Techniques

page 10

© 2017/EMCE H. Arthaber

That's it, you survived the tutorial!

RF Techniques

Questions?

Room: CF0131

Assoc. Prof. Dr. Holger Arthaber

Email: holger.arthaber@tuwien.ac.at

page 11

© 2017/EMCE H. Arthaber

