31. Impedance transformation - Reference Solution

The following circuit is to transform the load impedance ZL into the given input impedance.

Use the Smith-Chart to determine the transformer's winding ratio and the line length (in fractions of the wavelength)!

Find the solution with the shortest possible transmission line length!

31. Impedance transformation - Reference Solution

The following notation will be used in the Smith-charts:

- impedances are marked in BLUE
- admittances are marked in RED
- construction steps are marked in ORANGE (sometimes other colors might also be used for clarity)
- the reference impedance is indicated in to upper left corner
- pastel colors are used for preceding construction steps, impedances, and admittances
- reference planes are denoted by (1),(2),(3);
they are located at the following positions and use the following orientations:

31. Impedance transformation - Reference Solution

How to handle a variable transformer in the Smith-chart?

\rightarrow The impedance Z_{L} is transformed to $Z_{2}=\frac{1}{n^{2}} Z_{L}$.
\rightarrow The possible values of Z_{2} form a straight line in the Z-plane:

We know from other examples: Circles or lines (which are infinite radius circles) always transform into circles!

Thus, we expect an arc in the Smith-chart going through

- $z=0(\Gamma=-1)$, short-circuit
- $z=\infty-j \infty(\Gamma=+1)$, open
- $z=z_{L}$, normalized Z_{L} impedance

TU
31. Impedance transformation - Reference Solution

RF Techniques

$$
Z_{0}=50 \Omega
$$

31. Impedance transformation - Reference Solution

31. Impedance transformation - Reference Solution

That's it, you survived the tutorial!
Questions?
Assoc. Prof. Dr. Holger Arthaber
Email: holger.arthaber@tuwien.ac.at
Room: CF0131

