
ÜBUNGSBLATT 2

Beispiel 1 (Unschärferelation):

Eine einfache, aber nicht exakte Herleitung der Heisenberg'schen Unschärferelation lässt sich aus der Beugung von Quantenobjekten mit der Wellenlänge λ aus der Beugung am Einzelspalt gewinnen.

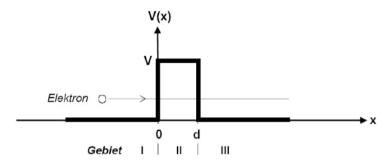
- (a) Leiten Sie die Formel für die Lage der Beugungsminima bei der Beugung am Einzelspalt her. Hinweis: Ist der Gangunterschied Δ zwischen dem Randstrahl und dem Zentrumsstrahl $\lambda/2$, bzw. ist der Gangunterschied zwischen den Randstrahlen λ , so kommt es zur Strahlauslöschung.
- (b) Abschätzung für die Impulsunschärfe Δp_x und Unschärferelation:

Auf den Spalt falle ein Parallelstrahl von Quantenobjekten mit dem Impuls p_y ein. Durch die Einengung auf den Ort Δx im Spalt weitet sich das Bündel auf dem Weg zum Schirm auf. Die Quantenobjekte erhalten nun eine Unschärfe im Querimpuls Δp_x , welche aus der Breite des Beugungsmaximums abgeschätzt werden kann. Berechnen Sie das Produkt $\Delta x \Delta p_x$.

Hinweise:

de-Broglie-Wellenlänge : $p=h/\lambda$

Verwenden Sie die Kleinwinkelnäherung : $\sin \alpha = \tan \alpha$


Beispiel 2 (Welle-Teilchen Dualismus):

Ein C_{60} Molekül bewegt sich mit der Geschwindigkeit v=1000 km/h und wird an einem Doppelspalt mit Spaltabstand d=10 μ m gebeugt. Schätzen Sie ab wie weit der Schirm / der Detektor vom Spalt entfernt sein muss damit Beugungseffekte aufgelöst werden können.

Beispiel 3 (Bindungsenergien im Bohrschen Atommodell):

Berechnen Sie ausgehend vom Bohrschen Atommodell die niedrigste Bindungsenergie für atomares Silizium (Si), Kohlenstoff (C) und Eisen (Fe).

Beispiel 4 (Tunneleffekt mit unterschiedlichen Massen):

Es sei eine Tunnelbarriere aus Galliumarsenid – Aluminiumarsenid – Galliumarsenid (GaAs-AlAs-GaAs) gegeben. Gebiet I und III besehen aus GaAs und Gebiet II aus AlAs. Berechnen Sie für eine Barrierenhöhe $V=1\mathrm{eV}$ und einer Elektronenenergie von 0.5 eV für die zwei Barrierendicken $d_1=2\mathrm{nm}$ und $d_2=5\mathrm{nm}$ den Tunneltransmissionskoeffizienten T. Man nehme an, dass die *effektive* Elektronenmasse im Bereich II anders als in Bereich I und III ist. Die effektive Elektronenmasse ist im GaAs gleich $m_{GaAs}=0.067m_0$ und im AlAs gleich $m_{AlAs}=0.2m_0$ ($m_0=9.11\mathrm{e}-31$ kg ... Elektronenmasse)