ÜBUNGSBLATT 6

Beispiel 21 (Wiederholung I):

(a) Drei unterschiedliche undotierte Halbleitermaterialien haben bei Raumtemperatur und bei vergleichbaren Bandgewichten N_c und N_v die intrinsischen Ladungsträgerdichten:

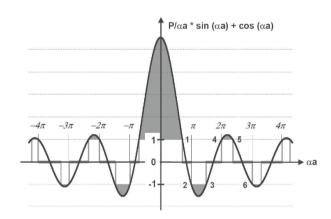
$$n_{i,a} = 2.3 \cdot 10^{13} \text{ cm}^{-3}$$

 $n_{i,b} = 1 \cdot 10^{-27} \text{ cm}^{-3}$
 $n_{i,c} = 2 \cdot 10^{16} \text{ cm}^{-3}$

Reihen Sie die Halbleiter a, b und c nach dem Bandgap. Um welche Halbleiter könnte es sich dabei handeln?

- (b) Ausgehend vom Banddiagramm von GaAs, erklären Sie bitte folgendes (Erklärung, Formel und Graphik!)
 - An welchen Punkten im Banddiagramm ist eine parabolische Näherung sinnvoll?
 - Wo ist die Effektive Masse der Elektronen am kleinsten?
 - Wo ist die Effektive Masse der Löcher am kleinsten?
 - Bei Temperaturerhöhung dehnen sich auch Halbleiter aus. Welche charakteristische Größe wird dadurch beeinflusst und wieso?
 - Welche anderen Effekte die Sie bisher gelernt haben sind Temperaturabhängig?

Beispiel 22 (Wiederholung II):



Ermitteln Sie ausgehend vom Kronig-Penney-Modell in 1D wie sich das Bandgap verändert wenn sich die Gitterkonstante *a* im Halbeiter verkleinert (z.B. durch Anlegen sehr hoher Drücke). Gehen Sie dabei folgendermaßen vor: die dimensionslose Lösung für das Deltapotential lautet

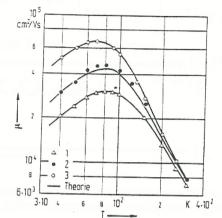
1

 $(P/\alpha a)\sin(\alpha a) + \cos(\alpha a) = \cos(ka)$

Die graphische Lösung ist im Bild links dargestellt. Die Gleichung hat nur dann eine reelle Lösung wenn die linke Seite der Gleichung im Intervall zwischen -1 und +1

liegt. Die Strecke zwischen 2 und 3 auf der αa Achse zeigt den Bereich an wo die Gleichung keine Lösung hat, dort befindet sich das Bandgap. Den Positionen 2 und 3 lassen sich über α Energien zuordnen, wenn der Atomabstand a bekannt ist)

Beispiel 23 (Beweglichkeit von Ladungsträgern):



Eine GaAs-Probe mit einer Donatorkonzentration von N_D = 5.4·10¹⁵ cm⁻³ hat eine Elektronenbeweglichkeit von μ_{nI} = 20000 cm²/(V·s) bei T₁=40K und eine Elektronenbeweglichkeit von μ_{n2} = 8000 cm²/(V·s) bei T₂ = 300K.

Bei welcher Temperatur liegt das Maximum der Elektronenbeweglichkeit und wie groß ist diese? Wie groß wäre die Elektronenbeweglichkeit einer vollkommen undotierten GaAs-Probe bei T₁=40K bzw. Bei T₂= 300K?

Nehmen Sie an, dass die Beweglichkeit zufolge Störstellen proportional zu T^{1.5} ist, jene zufolge Gitterstreuung proportional zu T^{-1.9} und verwenden Sie die Mathiessen-Regel.

Beispiel 24 (Halleffekt):

- (a) Stellen Sie in der Drude-Näherung die Bewegungsgleichung für ein Elektron im elektrischen und magnetischen Feld auf, unter Annahme einer konstanten Relaxationszeit τ . Leiten Sie hieraus im stationären Fall für eine Ladungsträgerdichte n bei = \vec{B} = (0,0,B) eine Relation zwischen dem elektrischem Feld \vec{E} und der Stromdichte \vec{j} ab. Schreiben sie diese Beziehung in Matrixform um: \vec{E} = ρ^{\wedge} \vec{j} Wie lauten die Matrixdarstellungen des Widerstandstensors ρ^{\wedge} und Leitfähigkeitstensors σ^{\wedge} ? (für σ^{\wedge} die Matrix invertieren!)
- (b) Für einen (n-Typ) Si-Balken der Länge L_x = 2 cm, Breite L_y = 0.2 cm und Höhe L_z = 0.2 cm werden bei = B=0.1 T für einen Strom I=10mA folgende Spannungsabfälle gemessen (jeweils über die gesamte Länge bzw. Breite): U_x = 4.15V, U_y = -2.1mV. Bestimmen Sie Ladungsträgerdichte, Beweglichkeit und Leitfähigkeit der Probe.