Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 26.02.2010

Name: Vorname(n): Matrikelnummer	::						Note:
	Aufgabe erreichbare Punkte erreichte Punkte	1 10,5	8	3 10,5	4 11	$\frac{\Sigma}{40}$	
${\bf Bitte}\;$							
tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,							
rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,							
beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,							
geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an,							
begründen Sie Ihre Antworten ausführlich und							
kreuzen Sie hier an, an welchem der folgenden Termine Sie nicht zur mündlichen Prüfung antreten können:							
\square Fr.,	$05.03.10 \Box \text{ Mo., } 08$	3.03.10	\square D	o., 11.0	03.10		

1. Gegeben ist die in Abbildung 1(a) dargestellte invertierende OPV-Schaltung mit idealem Operationsverstärker. Die Induktivität L_0 bezeichnet die Induktivität der Spulenanordnung aus Abbildung 1(b) mit zeitvariantem Luftspalt δ . Sie genügt näherungsweise der Gesetzmäßigkeit

$$L_0(\delta) = \frac{\lambda_1}{\lambda_0 + \delta}, \quad \delta \ge 0,$$

wobei λ_0 und λ_1 konstante Parameter sind. Die Spulenspannung u_L ergibt sich nach dem Induktionsgesetz aus der Flussverkettung $\psi = L_0(\delta)i_L$,

$$u_L = \frac{\mathrm{d}\psi}{\mathrm{d}t}.$$

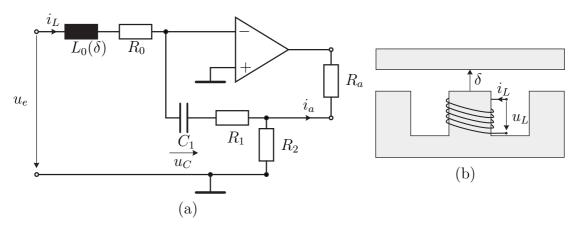


Abbildung 1: (a) Invertierende OPV-Schaltung mit luftspaltabhängiger Induktivität $L_0(\delta)$. (b) Prinzipskizze der luftspaltabhängigen Spule mit Induktivität $L_0(\delta)$.

a) Stellen Sie die Modellgleichungen in der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}), \quad y = q(\mathbf{x}, \mathbf{u})$$

auf. Wählen Sie geeignete Zustandsgrößen und verwenden Sie die Eingangsgrößen $\mathbf{u} = [v, u_e]^T$ mit $v = \dot{\delta}$ und als Ausgangsgröße $y = i_a$.

- b) Berechnen Sie die Ruhelagen des Systems für $u_e \equiv u_{e,R}$ und $v \equiv 0$. Wie viele 2 P. Ruhelagen gibt es? Was muss dabei für $u_{e,R}$ gelten?
- c) Linearisieren Sie das Modell um die durch $u_e = u_{e,R}, v = 0$ bestimmte Ruhelage 3,5 P.| \mathbf{x}_R und geben Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{u}$$
$$\Delta y = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{u}$$

an.

2. a) Analysieren Sie die nachfolgenden Differentialgleichungen hinsichtlich Lineari- 2 P.| tät und Zeitinvarianz.

$$\ddot{y}(t) - y(t) = u(t)\sqrt{2t}$$

II)
$$10\ddot{y}(t) - \ddot{y}(t) - \frac{\ddot{y}(t)}{t^2} + \sqrt{3}y(t) = u^2(t)$$

III)
$$\cos\left(\frac{\ddot{y}(t)}{t}\right) - \sqrt{3}\dot{y}(t) - \ddot{y}(t) = \int_{0}^{t} \sqrt{u(\tau)}d\tau$$

IV)
$$\ddot{y}(t) + \sqrt{3}\dot{y}(t) = \frac{8}{3}u(t)$$

b) Ein diskretes kausales LTI-System genügt der nachfolgenden Differenzenglei- $2\,\mathrm{P.}|$ chung

$$y_k = u_k - \frac{b}{2}u_{k-1} - \frac{b}{5}y_{k-1},\tag{1}$$

mit dem Eingang u_k sowie dem Ausgang y_k . Berechnen Sie die Impulsantwort dieses Systems.

- c) Welcher Bedingung muss b genügen, damit das System (1) als BIBO-stabil 2 P. klassifiziert werden kann? Wo liegen die Pol- sowie Nullstellen für den Fall, dass b = -4 gewählt wird? Ist das System in diesem Fall phasenminimal?
- d) Das System (1) wird mit einer Eingangsfolge der Form: 2 P.|

$$u_k = \left(\sqrt{2}\sin\left(k\frac{\pi}{4} - \frac{\pi}{\sqrt{12}}\right)\right)\sigma_k + \sigma_{k-5}$$

angeregt, wobei gilt:

$$\sigma_k = \begin{cases} 1 & \text{für } k \ge 0 \\ 0 & \text{sonst} \end{cases}$$

Berechnen Sie die eingeschwungene Lösung der Ausgangsfolge für einen allgemeinen Parameter b für das obige System. Nehmen Sie dabei an, dass b so gewählt wird, dass das System BIBO-stabil ist.

Hinweis: Sie müssen die Ausdrücke nicht explizit auswerten.

3. Betrachten Sie das durch die Differentialgleichung

$$\frac{\sqrt{3}}{3}\frac{\mathrm{d}^{2}y\left(t\right)}{\mathrm{d}t^{2}} + \left(1 + \frac{\sqrt{3}}{3}\right)\frac{\mathrm{d}y\left(t\right)}{\mathrm{d}t} + y\left(t\right) = 10u\left(t\right) \tag{2}$$

beschriebene System mit dem Eingang u und dem Ausgang y und dem durch G(s) beschriebenen Übertragungsverhalten. Bearbeiten Sie die folgenden Aufgaben:

- a) Überprüfen Sie, ob G(s) phasenminimal ist. 1P.| **Hinweis:** Die Faktorisierung eines Polynoms $p(s) = abs^2 + bs + as + 1$ mit den Koeffizienten a und b ist durch p(s) = (sa+1)(sb+1) gegeben.
- b) Zeichnen Sie das Bodediagramm von G(s). Verwenden Sie hierfür die vorhandene Vorlage.
- c) Entwerfen Sie für das obige System einen geeigneten Regler mit Hilfe des FKL- 3 P. Verfahrens so, dass der geschlossene Regelkreis die folgenden Eigenschaften erfüllt:
 - Anstiegszeit: $t_r = 1.5 \text{ s}$
 - Überschwingen: $\ddot{u} = 10\%$
 - bleibende Regelabweichung auf einen Führungssprung: $e_{\infty}|_{r(t)=\sigma(t)}=0$.
- d) Am Ausgang der Strecke wirkt gemäß Abbildung 2 eine Störung d. Zeigen Sie, $1.5\,\mathrm{P.}$ ob eine sprungförmige Störung $d\left(t\right)=0.5\sigma\left(t\right)$ ohne bleibende Regelabweichung unterdrückt werden kann?

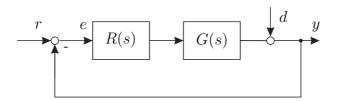


Abbildung 2: Standardregelkreis

e) Aufgrund einer Parameterschwankung verändert sich die Strecke (2). Die ver- 3 P.| änderte Strecke kann durch folgende Differentialgleichung beschrieben werden,

$$\left(\frac{\sqrt{3}}{3} + a\right) \frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + \left(1 + \frac{\sqrt{3}}{3} + a\right) \frac{\mathrm{d}y(t)}{\mathrm{d}t} + y(t) = 10u(t),$$

wobei a die Parameterschwankung bezeichnet. Für welche Werte von a bleibt der geschlossene Regelkreis mit dem von Ihnen entworfenen Regler stabil?

4. a) Gegeben ist das lineare und zeitinvariante Eingrößensystem

$$\mathbf{x}_{k+1} = \underbrace{\begin{bmatrix} 2 & 0 & -1 \\ 3 & -2 & 0 \\ -4 & 0 & 3 \end{bmatrix}}_{\mathbf{\Phi}} \mathbf{x}_k + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \mathbf{u}_k$$
$$y_k = \underbrace{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}}_{\mathbf{c}^T} \mathbf{x}_k$$

- i. Zeigen Sie mit Hilfe der Beobachtbarkeitsmatrix, dass dieses System *nicht* 1 P.| vollständig beobachtbar ist.
- ii. Welcher Zustand muss im Ausgangsvektor \mathbf{c}^T noch aufgenommen werden, 1 P. damit das System vollständig beobachtbar wird? Argumentieren Sie anhand der Struktur der Dynamikmatrix $\mathbf{\Phi}$.
- b) Das lineare, zeitinvariante, autonome System

$$\mathbf{x}_{k+1} = \begin{bmatrix} -3 & 0 & 1\\ 1 & -2 & 1\\ 3 & 0 & 0 \end{bmatrix} \mathbf{x}_k$$
$$y_k = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \mathbf{x}_k,$$

ist vollständig beobachtbar.

Entwerfen Sie dafür einen vollständigen Luenberger-Beobachter, der den Be- 5 P.| obachtungsfehler in einer minimalen Zahl von Abtastschritten zu **0** macht. Wieviel Schritte sind dies? Geben Sie die resultierende Fehlerdynamik an.

c) Betrachten Sie das folgende lineare, zeitinvariante Differentialgleichungssystem

$$\dot{x}_1 - \frac{x_1}{2} = \pi (50x_2 + 2u) \tag{3a}$$

$$2\dot{x}_2 = -100\pi x_1 + x_2 - \frac{u}{2} \tag{3b}$$

mit der Ausgangsgleichung

$$y = x_1 + x_2. \tag{3c}$$

i. Bringen Sie das System (3) in die Zustandsdarstellung 1 P.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$y = \mathbf{c}^T \mathbf{x}.$$

ii. Das vollständig beobachtbare, zeitkontinuierliche System wird mit der Abtastzeit T_a abgetastet. Geben Sie die Dynamikmatrix Φ des resultierenden zeitdiskreten Systems an. Welcher Bedingung muss T_a genügen, damit die Beobachtbarkeit des Systems nicht verloren geht?

