
Computation exercise 1(b): Dynamics

Mechatronic systems 376.050 2014W

Important: Answers must be a hard copy and submitted to the office in CA0421 by 19th of November, 2014 at 4pm. The work must be original.

- 1. For the floating mass shown in Fig. 1, write the differential equation and obtain the transfer function from the force *F* to the position *x*. [10 %]
- 2. Fig. 2 shows a damped mass-spring system.
 - i. Write the differential equation and derive the transfer function from the force F to the position x. Also calculate the un-damped natural frequency. [15 %]
 - ii. Discuss the effect of the damping, comparing the two cases: no damping and low damping. [15%]

3. A positioning system using a piezoelectric actuator can be modeled as a lumped mass model in Fig.3, where piezo's stiffness and damping are represented by k_1 and c_1 . The moving mass, m_1 and m_2 are connected by spring constant k_2 and damping coefficient c_2 . The values of these parameters are given in Table1.

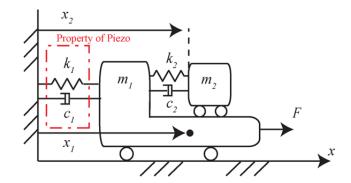


Table 1: Parameters

Parameter	Value	Unit
m₁	1.5x10 ⁻³	kg
m_2	0.1x10 ⁻³	kg
k_1	70x10 ³	N/m
k_2	10x10 ³	N/m
C ₁	0.5	N/(m/s)
C ₂	0.05	N/(m/s)

Fig. 3: A lumped mass model of a positioning system.

- i. Derive the differential equations for m_1 and m_2 , respectively. [15 %]
- ii. Derive the transfer function from force F to position x_1 and x_2 , respectively. [15 %]
- iii. Draw Bode plots of the transfer functions obtained in (ii) [15 %]
- iv. On the graph of the transfer functions in (iii), draw Bode plots of the following transfer functions. [15 %]

$$P_1(s) = \frac{1}{m_1 s^2 + c_1 s + k_1}, \qquad P_2(s) = \frac{1}{(m_1 + m_2) s^2 + c_1 s + k_1}$$