Important: Answers must be a hard copy and submitted to the office in CA0421 by December 17, 2014 at 4 pm . The work must be original.

Fig. 1 shows a lumped mass model of a positioning system using a Lorentz actuator. The power is provided by a current amplifier. The disturbance to be corrected has a power spectral density of $1 \mu \mathrm{~m} / \sqrt{\mathrm{Hz}}$ and a bandwidth of 100 Hz . The assignment is to compute amplifier requirements in terms of voltage and current.

Fig. 1: A lumped mass model of a positioning system, and a schematic of a Lorentz actuator

Parameter	Value	Unit	
m	0.5	kg	Mover mass
k	$30 \cdot 10^{3}$	$\mathrm{~N} / \mathrm{m}$	Stifness
c	1	$\mathrm{~N} /(\mathrm{m} / \mathrm{s})$	Damping
n	100	\sim	Number of windings
d_{c}	10	mm	Diameter coil
d_{w}	0.5	mm	Diameter wire
h_{c}	5	mm	Height coil
B	1	T	Magnetic field strength
ρ	$1.7 \cdot 10^{-8}$	Ω / m	Specific resistance
μ_{0}	$4 \pi \cdot 10^{-7}$	$\mathrm{~N} \mathrm{~A}^{2}$	Permitivity in vacuum
μ_{r}	100	\sim	Relative permitivity

i. Determine the Resistance, self-inductance of the coil and the motor constant of the actuator. [20\%]
ii. Determine the transfer function from input-current to displacement x / I and the input-current to voltage [30\%]
iii. Determine the required current and the voltage [30\%]

