Important: Answers must be a hard copy and submitted to the office in CA0421 by December 17, 2014 at 4 pm . The work must be original.

Fig. 1 shows a lumped mass model of a positioning system using a piezo actuator. The power is provided by a voltage amplifier. The disturbance to be corrected has a power spectral density of $1 \mathrm{~nm} / \sqrt{\mathrm{Hz}}$ and a bandwidth of 7.5 kHz . The assignment is to compute amplifier requirements in terms of voltage and current.

Fig. 1: A lumped mass model of a positioning system and the stacked piezo actuator

Parameter	Value	Unit	
Y	$53 \cdot 10^{9}$	$\mathrm{~N} / \mathrm{m}^{2}$	Youngs modulus
m	10	g	Weight mass
ρ	$7.85 \cdot 10^{3}$	$\mathrm{Kg} / \mathrm{m}^{3}$	Density piezo
c	10	$\mathrm{~N} /(\mathrm{m} / \mathrm{s})$	Damping
I_{0}	25	mm	Length piezo
r	5	mm	Radius piezo
d	$195 \cdot 10^{-12}$	$\mathrm{~m} / \mathrm{V}$	Piezoelectric coefficient
ε	$1.68 \cdot 10^{-8}$	$\mathrm{~F} / \mathrm{m}$	Dielectric coefficient
n	170	\sim	Number of stacks
R	50	Ω	Output impedance

i. Determine the mass, stiffness and the capacity of the piezo [15\%]
ii. Determine the transfer function from input voltage to displacement and the impedance of the piezo amplifier [30\%]
iii. Determine the required voltage and current [30\%]

