Computation Exercise

- Successful completion of the computational exercises is a prerequisite for the admission to the final exam.
- To pass the computation exercises, a positive result is required for all the following exercises.
 - Computation exercise 1: Dynamics
 - Computation exercise 2: Actuator

Computation exercise 3: Control design

Computation Exercise 3

- For computation exercise 3, two assignments are available:
 - Computation exercise 3(a): System with Lorentz actuator
 - Computation exercise 3(b): System with piezo actuator
- One of the two assignments has to be selected, and its answer must be submitted by the deadline.
- Submission of the exercise
 - Deadline: 20th of January at 4PM (No grace period).
 - Answers must be hard copy with a student name and number.
 - Answers must be submitted to the mail box for Shingo Ito in CA0421.
 - Strongly recommended to work alone. (Don't copy)

Computation Exercise 3

- It is expected that a software (e.g. MATLAB) is used for the computation exercises.
 - Student licenses are available with a reasonable price at "Zentraler Informatikdienst".
 - Computers with MATLAB and Maple may be available at the computer laboratory (CA0426). Please talk to Shingo Ito after the lecture for reservation.

Computation Exercise 3(a)

To regulate the position x_2 by using the input F, design a feedback controller C(s), following the questions below.

 $C(s) = C_{PID}(s)C_{notch}(s),$

- i. Derive transfer function P(s) and simulate a Bode plot. [5%]
- ii. Design the notch filter, such that the peak in the magnitude of P(s) is trimmed in the Bode plot of (i). For validation, add a simulated Bode plot of the transfer function $C_{notch}(s)P(s)$ on the figure of (i). [15%]

Computation Exercise 3(a)

- iii. Design $C_{PID}(s)$ to regulate the plant cascaded with the notch filter (i.e. $C_{notch}(s)P(s)$), fulfilling the following conditions. (See "rule of thumb" in the textbook.) Also simulate a Bode plot of the open-loop transfer function $C_{PID}(s)C_{notch}(s)P(s)$ for validation. [20%]
 - Phase margin should be 40 deg or more.
 - Gain margin should be 10 dB or more.
 - The open-loop cross-over frequency should be as high as possible.

Computation Exercise 3(a)

iv. Simulate step response of the closed-loop system with *r* as the input and x_2 as the output. Also draw step response with the disturbance *d* as the input and x_2 as the output. Using the results, discuss the influence of the notch filter on these inputs. [20%]

There are two more continuous questions. However because they are control implementation problems, they will be explained on January 8th, 2015.

Computation Exercise 3(b)

To regulate the position x by using the input F, design a feedback controller C(s), following the questions below.

 $C(s) = C_I(s)C_{notch}(s),$

- i. Derive transfer function P(s) and simulate a Bode plot. [5%]
- ii. Design the notch filter, such that the peak in the magnitude of P(s) is trimmed in the Bode plot of (i). For validation, add a simulated Bode plot of the transfer function $C_{notch}(s)P(s)$ on the figure of (i). [15%]

Computation Exercise 3(b)

- iii. Design $C_{I}(s)$ to regulate the plant cascaded with the notch filter (i.e. $C_{notch}(s)P(s)$), fulfilling the following conditions. Also simulate a Bode plot of the open-loop transfer function $C_{I}(s)C_{notch}(s)P(s)$ for validation. [20%]
 - Phase margin should be 40 deg or more.
 - Gain margin should be 10 dB or more.
 - The open-loop cross-over frequency should be as high as possible.

Computation Exercise 3(b)

iv. Simulate step response of the closed-loop system with *r* as the input and *x* as the output. Also draw step response with the disturbance *d* as the input and *x* as the output. Using the results, discuss the influence of the notch filter on these inputs. [20%]

There are two more questions. However, because they are control implementation problems, they will be explained on January 8th, 2015.

