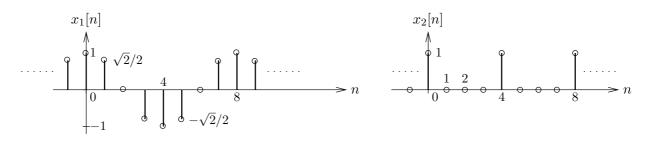
ZUNAME:	1. SuS2-Teilprüfung A			
VORNAME:	Institut für Nachrichtentechnik und Hochfrequenztechnik			
MAT. NR.:	G. Doblinger, C. Novak 23.4.2008			


Bitte beachten Sie:

- An schriftlichen Unterlagen darf nur die **SuS2-Formelsammlung** verwendet werden!
- Die Beispiele ausschließlich auf den Seiten dieser Angabe ausarbeiten. Zusatzblätter werden ignoriert!
- Eine lesbare Schrift und übersichtliche Darstellung ist eine Voraussetzung für die positive Beurteilung Ihrer Arbeit!
- Mobiltelefone müssen während des Tests ausgeschaltet sein!

	Punkte
1	
2	
3	
\sum	

1. BEISPIEL (33 Punkte)

Gegeben seien zwei **periodische**, **zeitdiskrete Signale** $x_1[n]$ und $x_2[n]$.

a) Bestimmen Sie die **Periodendauer** N_1 von $x_1[n]$

$$N_1 =$$

b) Welche **Symmetrie** (gerade/ungerade/keine) besitzt das gegebene Signal? **Begründung:**

Symmetrie von $x_1[n]$:

c)	Bestimmen Sie die Fourierreihenkoeffizienten c_k des Signals $x_1[n]$. ACHTUNG:
	Das Ergebnis muss vereinfacht werden!

$$c_k =$$
 , $k =$

d) Bestimmen Sie die **Periodendauer** N_2 von $x_2[n]$

$$N_2 =$$

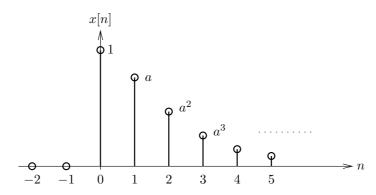
e)	Das Signal $y[n]$ wird durch $y[n] = x_1[n]x_2[n]$ gebildet. Skizzieren Sie $y[n]$ und geben Sie die Periodendauer N von $y[n]$ an.						
	Skizze von $y[n]$: (Achsen beschriften!)						
	N =						
f)	Berechnen Sie die Fourierreihenkoeffizienten c_k des Signals $y[n]$ aus Punkt e). ACHTUNG: Das Ergebnis muss vereinfacht werden!						

 $c_k =$

, k =

 $\mathbf{f}_1)$ Sind die Koeffizienten c_k reell/imaginär/komplex?

 c_k ist


 $\mathbf{f}_2)$ Welche Symmetrie zeigen die Koeffizienten $c_k?$

Symmetrie von c_k :

 f_3) Skizzieren Sie c_k (Achsen beschriften!)

2. BEISPIEL (33 Punkte)

Gegeben ist das Signal x[n].

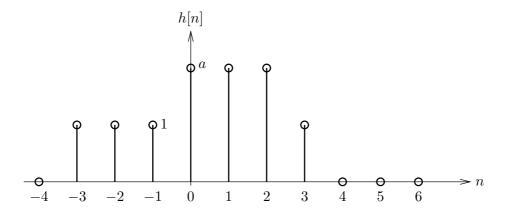
a) Für welchen Wertebereich von a ist das Signal stabil?

Wertebereich von a:

$$X(e^{j\theta}) =$$

Skizze von $|X\left(e^{j\theta}\right)|$ für $\theta\in[-\pi,\pi]$: (Achsen beschriften!)

c) Nun wird das Signal ab $n \ge N+1$ gleich Null gesetzt, und man erhält das Signal $\tilde{x}[n]$. Skizze von $\tilde{x}[n]$: (Achsen beschriften!)


d) Berechnen Sie die Fouriertransformation $\tilde{X}(e^{j\theta})$ des Signals $\tilde{x}[n]$. ACHTUNG: Das Ergebnis muss vereinfacht werden!

$$\tilde{X}(e^{j\theta}) =$$

e)	Berechnen $x[n]$.	Sie das	Verhältnis α	der	Signalenergie	von	$\tilde{x}[n]$	zur	Signalenergie	von
										_
	$\alpha =$									

3. BEISPIEL (34 Punkte)

Gegeben ist ein System mit folgender Impulsantwort h[n].

a) Prüfen Sie, ob das System kausal ist und begründen Sie Ihre Antwort!

b) Berechnen Sie die Übertragungsfunktion $H(e^{j\theta})$ des gegebenen Systems.

$$H(e^{j\theta}) =$$

c) Wählen Sie den Parameter a so, daß $H\left(e^{j\theta}\right)|_{\theta=0}=0$ gilt.

a =

d) An das System wird nun ein Eingangssignal $x[n]=1, \ \forall n$ angelegt. Berechnen Sie das Ausgangssignal y[n].

y[n] =