TECHNISCHE UNIVERSITÄT
WIEN
Vienna University of Technology

Homework 2

VU Wireless Communications 1, 389.157, SS 2015, Jelena Kaitović, jkaitovi@nt.tuwien.ac.at

Important for getting a grade:

- Answer all questions tagged with boxes such as XY short and precise, and state the question number next to the solution.
- Put the homework into the box located at the 1st floor of the Institute of Telecommunication, or send it to jkaitovi@nt.tuwien.ac.at.
- Attend the exercise lecture and be prepared to be called to the blackboard for presenting your results.
- In case questions arise, do not hesitate to contact me!

1 Rayleigh Fading Distribution

Starting from a Rayleigh distribution, with probability density function:

$$
p(r)=\left\{\begin{array}{lll}
\frac{r}{\alpha} \exp \left(-\frac{r^{2}}{2 \alpha}\right) & ; & r \geq 0 \tag{1}\\
0 & ; & \text { else }
\end{array}\right.
$$

where r is the instantaneous magnitude of the received voltage signal before envelope detection, and σ^{2} it the time-average power of the received signal before envelope detection.
$2 \mathrm{p} \quad 1$ Find the probability that the envelope of the received signal doesn't exceed a specified value R.
$3 \mathrm{p} \quad 2$ Find the mean value of the Rayleigh distribution. (Hint: Use the Gaussian integral $\int_{0}^{\infty} \exp \left(-x^{2}\right) d x=\frac{\sqrt{\pi}}{2}$.)
3 Find the variance of the Rayleigh distribution.
$1 \mathrm{p} \quad 4$ Find the rms value of the envelope.
$2 \mathrm{p} \quad 5$ Find the median value of r.

The level crossing rate (LCR) is defined as the expected rate at which the Rayleigh fading envelope, normalized to the local rms signal level, crosses a specified level in a positive-going direction.
The number of level crossings per second is given by:

$$
\begin{equation*}
N_{R}=\int \frac{d r\left(t_{1}\right)}{d t} p\left(R=r\left(t_{1}\right), \frac{d r\left(t_{1}\right)}{d t}\right) d\left(\frac{d r\left(t_{1}\right)}{d t}\right)=\sqrt{2 \pi} \nu_{\max } \rho e^{-\rho^{2}}, \tag{2}
\end{equation*}
$$

where $\nu_{\max }$ is the maximum Doppler frequency and $\rho=\frac{R}{R_{\mathrm{rms}}}$ is the value of the specified level R, normalized to the local rms amplitude of the fading envelope.

The average fade duration is defined as the average period of time for which the received signal is below a specified level R :

$$
\begin{equation*}
\bar{\tau}=\frac{P_{r}[r \leq R]}{N_{R}} \tag{3}
\end{equation*}
$$

and $P_{r}[r \leq R]$ is the probability that the received signal r is less than R .
$4 \mathrm{p} \quad 6$ A vehicle receives a 2.1 GHz transmission while travelling at a constant velocity for 10 s . The average fade duration for a signal level 10 dB below the rms level is 1 ms . How far does the vehicle travel during the 10 s interval?
$3 \mathrm{p} \quad 7$ How many fades does the signal from Question [6] undergo at the rms threshold level during a 10 s interval? Assume that the local mean remains constant during the travel.

2 Moving Users and Doppler Spread

$2 \mathrm{p} \quad 8$ Users of a communication system at 2.1 GHz are moving with $150 \mathrm{~km} / \mathrm{h}$. Find $\nu_{\text {max }}$ and the coherence time. (Hint: use the Fleury uncertainty relationship $T_{\text {coh }} \leq \frac{1}{2 \pi S_{\nu}}$, and $S_{\nu}=\frac{\nu_{\text {max }}}{\sqrt{2}}$.
$1 \mathrm{p} \quad 9$ How does the coherence time influence a communication system?
1 p 10 Looking at the Fleury uncertainty relationship, explain how the rms Doppler spread influences the coherence time.
$2 \mathrm{p} \quad 11$ Assume that one pilot symbol is enough to estimate the channel correctly for a duration of $T_{\text {coh }}$. How many symbols in one frame have to be pilot symbols for channel tracking? Use the coherence time calculated in Question [8] and assume a frame duration of a) $\left.T_{f}=700 \mu \mathrm{~s}, \mathrm{~b}\right) T_{f}=7.5 \mathrm{~ms}$.

3 Moments of the Power Delay Profile

A local spatial average of a power delay profile $P_{r}(\tau)$ measured at 2.1 GHz is shown in Figure 1.

Figure 1: Indoor channel Response
$1 \mathrm{p} \quad 12$ Calculate the mean power P_{m}.
$2 \mathrm{p} \quad 13$ Find the mean delay T_{m} for this channel.
$2 \mathrm{p} \quad 14$ For this channel calculate the rms delay spread S_{τ}.
$1 \mathrm{p} \quad 15$ If a particular modulation provides suitable BER performance whenever $\frac{S_{T}}{T_{s}} \leq$ 0.1, determine the shortest symbol period T_{s} that can be sent through the RF channel shown in Figure 1, without using an equalizer.
1 p 16 Determine the highest symbol rate that may be sent through the RF channel of Question [15].

