Digital Communications 2 Written exam on December 10, 2013

Institute of Telecommunications
Vienna University of Technology

Please note:

- You are allowed to use the official lecture notes, a pocket calculator, and a collection of mathematical formulas.
- You are not allowed to use handwritten lecture notes, materials from exercise classes, and precalculated problems.
- Readable handwriting and a clear presentation are mandatory.
- Provide detailed derivations and calculations. If results from the lecture notes are used, they have to be referenced unambiguously.
- Due to changes of the modus operandi for the exercise class since the $08 / 09$ winter semester, the maximum number of achievable credits will be scaled from 80 to 90 for the corresponding candidates.

Problem 1 (20 credits)

Consider transmission of codewords $\mathbf{c}=\left(\begin{array}{llll}c_{0} & c_{1} & c_{2} & c_{3}\end{array} c_{4}\right)^{T}$ with $c_{n} \in\{0,1,2,3\}$ over a memoryless HISO channel $q_{n}=a_{n}+z_{n}$, where $c_{n}=0,1,2$, and 3 correspond to $a_{n}=-6,-3,3$, and 6 , respectively. The z_{n} are statistically independent with pdf

$$
f_{Z_{n}}(z)= \begin{cases}\frac{1}{16}(4-|z|), & |z| \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

a) The receiver first performs symbol-by-symbol ML detection of a_{n} based on q_{n}, thereby converting the HISO channel to a HIHO channel $c_{n} \rightarrow v_{n}$. Sketch that HIHO channel and calculate its transition probabilities. Is it a symmetric DMC?
b) Calculate the block transition probability $p_{\mathbf{V} \mid \mathbf{C}}\left(\mathbf{v}^{(1)} \mid \mathbf{c}^{(1)}\right)$ of the HIHO channel for the codeword $\mathbf{c}^{(1)} \leftrightarrow \mathbf{a}^{(1)}=\left(\begin{array}{lllll}-3 & -3 & 6 & 3 & -6\end{array}\right)^{T}$ and the senseword $\mathbf{v}^{(1)}=\left(\begin{array}{lllll}2 & 1 & 3 & 1 & 0\end{array}\right)^{T}$. Determine $d_{\mathrm{H}}\left(\mathbf{c}^{(1)}, \mathbf{v}^{(1)}\right)$.
c) Find a codeword $\mathbf{c}^{(2)}$ such that

$$
p_{\mathbf{V} \mid \mathbf{C}}\left(\mathbf{v}^{(1)} \mid \mathbf{c}^{(2)}\right)>p_{\mathbf{V} \mid \mathbf{C}}\left(\mathbf{v}^{(1)} \mid \mathbf{c}^{(1)}\right) \quad \text { even though } \quad d_{\mathrm{H}}\left(\mathbf{c}^{(2)}, \mathbf{v}^{(1)}\right)>d_{\mathrm{H}}\left(\mathbf{c}^{(1)}, \mathbf{v}^{(1)}\right) .
$$

d) Is the block decoder defined by the decision rule $\hat{\mathbf{c}}(\mathbf{v})=\arg \min _{\mathbf{c} \in \mathcal{C}} d_{\mathrm{H}}(\mathbf{c}, \mathbf{v})$ equal to the ML block decoder?

Encoder A:

Encoder B:

Figure 1: The two encoders.

Problem 2 (20 credits)

The two encoders A and B depicted in Figure 1 implement the encoding of binary block codes \mathcal{C}_{A} (minimum distance $d_{\min , \mathrm{A}}$) and \mathcal{C}_{B} (minimum distance $d_{\min , \mathrm{B}}$), respectively. The generator matrices \mathbf{G}_{1} and \mathbf{G}_{2} in Figure 1 define linear component codes \mathcal{C}_{1} and \mathcal{C}_{2} with minimum distances $d_{\min , 1}$ and $d_{\min , 2}$, respectively (note that these component codes are generally different for encoder A and encoder B).
a) Are the codes \mathcal{C}_{A} and \mathcal{C}_{B} linear? Are the encoders A and B systematic, if the encoders for \mathcal{C}_{1} and \mathcal{C}_{2} are systematic?
b) Find the minimum distance $d_{\text {min, }}$ of $\operatorname{code} \mathcal{C}_{\mathrm{A}}$.
c) Consider code \mathcal{C}_{B}. Is it possible that $d_{\text {min, } \mathrm{B}}<d_{\text {min }, 2}$?
d) For encoder A , assume that both \mathcal{C}_{1} and \mathcal{C}_{2} are $(4,3)_{2}$ single-parity-check codes. Calculate the rate R_{A} of \mathcal{C}_{A}, find a generator matrix \mathbf{G}_{A} and a check matrix \mathbf{H}_{A}, and determine the resulting minimum distance $d_{\text {min,A }}$.
e) For encoder B , assume that \mathcal{C}_{1} is a $(7,4)_{2}$ Hamming code and \mathcal{C}_{2} is a single-parity-check code. Specify the blocklength and dimension of \mathcal{C}_{2}. Calculate the rate R_{B} of \mathcal{C}_{B}, find a generator matrix \mathbf{G}_{B} and a check matrix \mathbf{H}_{B}, and determine the resulting minimum distance $d_{\text {min,B }}$.

Problem 3 (20 credits)

Consider the polynomial $g(x)=x^{3}+x^{2}+1$.
a) Show that $g(x)$ is the generator polynomial of a primitive cyclic code of blocklength $N=7$ over GF(2).
b) What is the dimension of that code?
c) Calculate all zeros of $g(x)$ in the (smallest possible) splitting field.
d) Use the result of part c) to check if $v_{1}(x)=x^{4}+x^{2}+x+1$ and $v_{2}(x)=x^{4}+x+1$ are codewords.
e) What is the rate of the dual code?

Problem 4 (20 credits)

In the following dual codes of Reed-Solomon codes are investigated. Consider a Reed-Solomon code \mathcal{C} over $\operatorname{GF}(q)$ with minimum Hamming distance $d_{\text {min }}$ and frequency parameter k_{1}.
a) Show that the dual code \mathcal{C}^{\perp} of \mathcal{C} is a Reed-Solomon code. Determine the minimum Hamming distance $d_{\text {min }}^{\perp}$ and the frequency parameter k_{1}^{\perp} of \mathcal{C}^{\perp}.
b) Use the results of a) to show that no self-dual Reed-Solomon code can exist (\mathcal{C} is self-dual iff $\left.\mathcal{C}=\mathcal{C}^{\perp}\right)$.
c) Design a Reed-Solomon code over $\operatorname{GF}(8)=\left\{0,1, z, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}\right\}(z \in \operatorname{GF}(8)$ is a primitive element, i.e. $z^{3}+z+1=0$), such that its dual code has a minimum Hamming distance $d_{\text {min }}^{\perp}=5$ and a frequency parameter $k_{1}^{\perp}=3$.
c1) Determine the blocklength $N=N^{\perp}$, the rates R and $R^{\perp}, d_{\text {min }}$ and k_{1}.
c2) Calculate the generator polynomials $g(x)$ and $g^{\perp}(x)$ and the check polynomials $h(x)$ and $h^{\perp}(x)$.
c3) Consider a systematic encoding of the dataword $\mathbf{u}=\left(z^{0} z^{5} z^{1}\right)^{T}$ for the dual code in the frequency domain. Determine the corresponding codeword in time and frequency domain.
c4) Check whether $\mathbf{c}=\left(z^{0} z^{5} z^{3} z^{1} z^{6} z^{4} z^{2}\right)^{T}$ is a valid codewort of the dual code.

