Digital Communications 2 Written exam on December 10, 2013

Institute of Telecommunications Vienna University of Technology

Please note:

- You are allowed to use the official lecture notes, a pocket calculator, and a collection of mathematical formulas.
- You are not allowed to use handwritten lecture notes, materials from exercise classes, and precalculated problems.
- Readable handwriting and a clear presentation are mandatory.
- Provide detailed derivations and calculations. If results from the lecture notes are used, they have to be referenced unambiguously.
- Due to changes of the modus operandi for the exercise class since the 08/09 winter semester, the maximum number of achievable credits will be scaled from 80 to 90 for the corresponding candidates.

Problem 1 (20 credits)

Consider transmission of codewords $\mathbf{c} = (c_0 \ c_1 \ c_2 \ c_3 \ c_4)^T$ with $c_n \in \{0, 1, 2, 3\}$ over a memoryless HISO channel $q_n = a_n + z_n$, where $c_n = 0, 1, 2$, and 3 correspond to $a_n = -6, -3, 3$, and 6, respectively. The z_n are statistically independent with pdf

$$f_{Z_n}(z) = \begin{cases} \frac{1}{16}(4 - |z|), & |z| \le 4\\ 0, & \text{otherwise.} \end{cases}$$

- a) The receiver first performs symbol-by-symbol ML detection of a_n based on q_n , thereby converting the HISO channel to a HIHO channel $c_n \rightarrow v_n$. Sketch that HIHO channel and calculate its transition probabilities. Is it a symmetric DMC?
- **b)** Calculate the block transition probability $p_{\mathbf{V}|\mathbf{C}}(\mathbf{v}^{(1)}|\mathbf{c}^{(1)})$ of the HIHO channel for the codeword $\mathbf{c}^{(1)} \leftrightarrow \mathbf{a}^{(1)} = (-3 \ -3 \ 6 \ 3 \ -6)^T$ and the senseword $\mathbf{v}^{(1)} = (2 \ 1 \ 3 \ 1 \ 0)^T$. Determine $d_{\mathrm{H}}(\mathbf{c}^{(1)}, \mathbf{v}^{(1)})$.
- c) Find a codeword $\mathbf{c}^{(2)}$ such that

 $p_{\mathbf{V}|\mathbf{C}}(\mathbf{v}^{(1)}|\mathbf{c}^{(2)}) > p_{\mathbf{V}|\mathbf{C}}(\mathbf{v}^{(1)}|\mathbf{c}^{(1)})$ even though $d_{\mathrm{H}}(\mathbf{c}^{(2)},\mathbf{v}^{(1)}) > d_{\mathrm{H}}(\mathbf{c}^{(1)},\mathbf{v}^{(1)})$.

d) Is the block decoder defined by the decision rule $\hat{\mathbf{c}}(\mathbf{v}) = \arg\min_{\mathbf{c}\in\mathcal{C}} d_{\mathrm{H}}(\mathbf{c},\mathbf{v})$ equal to the ML block decoder?

Encoder A:

Encoder B:

Figure 1: The two encoders.

Problem 2 (20 credits)

The two encoders A and B depicted in Figure 1 implement the encoding of binary block codes C_A (minimum distance $d_{\min,A}$) and C_B (minimum distance $d_{\min,B}$), respectively. The generator matrices \mathbf{G}_1 and \mathbf{G}_2 in Figure 1 define linear component codes C_1 and C_2 with minimum distances $d_{\min,1}$ and $d_{\min,2}$, respectively (note that these component codes are generally different for encoder A and encoder B).

- a) Are the codes C_A and C_B linear? Are the encoders A and B systematic, if the encoders for C_1 and C_2 are systematic?
- **b)** Find the minimum distance $d_{\min,A}$ of code C_A .
- c) Consider code $C_{\rm B}$. Is it possible that $d_{\min,{\rm B}} < d_{\min,2}$?
- d) For encoder A, assume that both C_1 and C_2 are $(4,3)_2$ single-parity-check codes. Calculate the rate R_A of C_A , find a generator matrix \mathbf{G}_A and a check matrix \mathbf{H}_A , and determine the resulting minimum distance $d_{\min,A}$.
- e) For encoder B, assume that C_1 is a $(7, 4)_2$ Hamming code and C_2 is a single-parity-check code. Specify the blocklength and dimension of C_2 . Calculate the rate R_B of C_B , find a generator matrix \mathbf{G}_B and a check matrix \mathbf{H}_B , and determine the resulting minimum distance $d_{\min,B}$.

Problem 3 (20 credits)

Consider the polynomial $g(x) = x^3 + x^2 + 1$.

- a) Show that g(x) is the generator polynomial of a primitive cyclic code of blocklength N=7 over GF(2).
- **b**) What is the dimension of that code?
- c) Calculate all zeros of g(x) in the (smallest possible) splitting field.
- d) Use the result of part c) to check if $v_1(x) = x^4 + x^2 + x + 1$ and $v_2(x) = x^4 + x + 1$ are codewords.
- e) What is the rate of the dual code?

Problem 4 (20 credits)

In the following dual codes of Reed-Solomon codes are investigated. Consider a Reed-Solomon code C over GF(q) with minimum Hamming distance d_{\min} and frequency parameter k_1 .

- a) Show that the dual code \mathcal{C}^{\perp} of \mathcal{C} is a Reed-Solomon code. Determine the minimum Hamming distance d_{\min}^{\perp} and the frequency parameter k_1^{\perp} of \mathcal{C}^{\perp} .
- b) Use the results of a) to show that no *self-dual* Reed-Solomon code can exist (C is self-dual iff $C = C^{\perp}$).
- c) Design a Reed-Solomon code over $GF(8) = \{0, 1, z, z^2, z^3, z^4, z^5, z^6\}$ $(z \in GF(8)$ is a primitive element, i.e. $z^3 + z + 1 = 0$, such that its dual code has a minimum Hamming distance $d_{\min}^{\perp} = 5$ and a frequency parameter $k_1^{\perp} = 3$.
 - c1) Determine the blocklength $N = N^{\perp}$, the rates R and R^{\perp} , d_{\min} and k_1 .
 - **c2)** Calculate the generator polynomials g(x) and $g^{\perp}(x)$ and the check polynomials h(x) and $h^{\perp}(x)$.
 - c3) Consider a systematic encoding of the dataword $\mathbf{u} = (z^0 z^5 z^1)^T$ for the dual code in the frequency domain. Determine the corresponding codeword in time and frequency domain.
 - **c4)** Check whether $\mathbf{c} = (z^0 z^5 z^3 z^1 z^6 z^4 z^2)^T$ is a valid codewort of the dual code.