Digital Communications 2 Written exam on January 30, 2014

Institute of Telecommunications
Vienna University of Technology

Please note:

- You are allowed to use the official lecture notes, a pocket calculator, and a collection of mathematical formulas.
- You are not allowed to use handwritten lecture notes, materials from exercise classes, and precalculated problems.
- Readable handwriting and a clear presentation are mandatory.
- Provide detailed derivations and calculations. If results from the lecture notes are used, they have to be referenced unambiguously.
- Due to changes of the modus operandi for the exercise class since the $08 / 09$ winter semester, the maximum number of achievable credits will be scaled from 80 to 90 for the corresponding candidates.

Problem 1 (20 credits)

The weight enumerator of a linear $\left(N, K, d_{\min }\right)_{q}$ block code is defined as

$$
A(x)=\sum_{i=0}^{N} A_{i} x^{i},
$$

where A_{i} is the number of codewords with Hamming weight i.
a) Prove the following properties:
a1) $A_{0}=1$,
a2) $A_{N} \leq(q-1)^{N}$,
a3) $A_{i}=0$ for $0<i<d_{\text {min }}$,
a4) $A_{d_{\text {min }}} \geq 1$,
a5) $A(1)=q^{K}$.
b) Calculate $A(x)$ for the following $(N, K)_{q}$ codes:
b1) $(N, 1)_{q}$ repetition code,
b2) $(7,4)_{2}$ Hamming code,
b3) $(N, N-1)_{2}$ single-parity-check code.

Problem 2 (20 credits)

Consider the binary encoder of \mathcal{C} defined as

$$
\left(\begin{array}{ll}
u_{0} & u_{1}
\end{array}\right)^{T} \rightarrow\left(\begin{array}{lllll}
u_{0}-u_{1} & u_{0} & u_{1} & u_{1} & u_{0}
\end{array}\right)^{T} .
$$

a) Find the parameters N and K of \mathcal{C}. Is \mathcal{C} a cyclic code?
b) Find a generator and a check matrix for \mathcal{C}. What is the minimum distance?
c) Construct a standard array for \mathcal{C}. How many codewords are in the interstitial region? Perform MD decoding and BMD decoding for the sensewords $(11011)^{T}$ and $(00111)^{T}$.
d) Construct a decoding table and perform syndrome decoding of the two sensewords given in c).
e) Calculate the probability of an unsuccessful transmission over a BSC with bit inversion probability $p=0.2$ followed by a BMD. Compare the result to the block error probability of uncoded transmission.

Problem 3 (20 credits)

Consider the polynomial $g(x)=x^{3}+x+1$.
a) Show that $g(x)$ is the generator polynomial of a primitive cyclic code of blocklength $N=7$ over $\mathrm{GF}(2)$ and calculate the check polynomial $h(x)$.
b) What is the dimension of that code?
c) Determine the smallest possible splitting field $\mathrm{GF}\left(q^{m}\right)$ of $g(x)$.
d) Calculate all zeros of $g(x)$ and $h(x)$ in the (smallest possible) splitting field. Represent the zeros in terms of a primitive element z of that splitting field.
e) Use two different methods to check if $v_{1}(x)=x^{4}+x^{2}+x+1$ and $v_{2}(x)=x^{4}+x+1$ are codewords.
f) What is the rate of the dual code?

Problem 4 (20 credits)

Consider a Reed-Solomon (RS) code \mathcal{C} of blocklength $N=15$, minimum distance $d_{\min }=13$, and band position parameter $k_{1}=14$.
a) What is the underlying Galois field?
b) Specify the rate R.
c) Provide expressions for the generator and check polynomials in terms of a primitive element $z \in \operatorname{GF}(q)$.
d) Consider systematic encoding of the dataword $\mathbf{u}=\left(z^{0} z^{5} z^{1}\right)^{T}$ in the frequency domain. Specify the resulting codeword \mathbf{c} in the frequency domain and in the time domain.

Hint: It is known that

$$
\begin{aligned}
& \mathcal{F}^{-1}\left\{\left(\begin{array}{lll}
0 & 0 & 000 z^{0} z^{5} z^{1} 00000000
\end{array}\right)^{T}\right\} \\
& \\
& \\
& =\left(z^{8} z^{13} z^{1} z^{12} z^{5} z^{13} z^{1} z^{2} z^{13} z^{7} z^{11} z^{0} z^{1} z^{10} z^{2}\right)^{T} .
\end{aligned}
$$

e) Determine the check frequencies of the dual code \mathcal{C}^{\perp}.
f) Is \mathcal{C}^{\perp} an RS code? If yes, determine the band position parameter k_{1}^{\perp}.

