Digital Communications 2
 Written exam on March 05, 2014

Institute of Telecommunications
Vienna University of Technology

Please note:

- You are allowed to use the official lecture notes, a pocket calculator, and a collection of mathematical formulas.
- You are not allowed to use handwritten lecture notes, materials from exercise classes, and precalculated problems.
- Readable handwriting and a clear presentation are mandatory.
- Provide detailed derivations and calculations. If results from the lecture notes are used, they have to be referenced unambiguously.
- Due to changes of the modus operandi for the exercise class since the $08 / 09$ winter semester, the maximum number of achievable credits will be scaled from 80 to 90 for the corresponding candidates.

Problem 1 (20 credits)

Consider the $(8,4)_{2}$ extended binary Hamming code \mathcal{C}, which consists of the $(7,4)_{2}$ Hamming code and a single parity check bit. Furthermore, consider the $(8,7)_{2}$ single parity check code \mathcal{C}^{\prime}.
a) Find the generator and check matrices of \mathcal{C}.
b) Find the weight enumerators of \mathcal{C} and \mathcal{C}^{\prime}.
c) Consider transmission over a binary symmetric channel with bit inversion probability p. Find the probability of an undetected error for \mathcal{C} and \mathcal{C}^{\prime}.

Problem 2 (20 credits)

The two encoders A and B depicted in Figure ?? implement the encoding of binary block codes \mathcal{C}_{A} (minimum distance $d_{\min , \mathrm{A}}$) and \mathcal{C}_{B} (minimum distance $d_{\text {min, } \mathrm{B}}$), respectively. The generator matrices \mathbf{G}_{1} and \mathbf{G}_{2} define linear component codes \mathcal{C}_{1} and \mathcal{C}_{2} with minimum distances $d_{\text {min, } 1}$ and $d_{\min , 2}$, respectively (note that these component codes are generally different for encoder A and encoder B).
a) Are the codes \mathcal{C}_{A} and \mathcal{C}_{B} linear? Are the encoders A and B systematic, if the encoders for \mathcal{C}_{1} and \mathcal{C}_{2} are systematic?
b) Find the minimum distance $d_{\min , \mathrm{A}}$ of code \mathcal{C}_{A}.
c) Consider code \mathcal{C}_{B}. Is it possible that $d_{\text {min, } \mathrm{B}}<d_{\min , 2}$? Justify your answer.
d) For encoder A , assume that both \mathcal{C}_{1} and \mathcal{C}_{2} are $(4,3)_{2}$ single-parity-check codes. Calculate the rate R_{A} of \mathcal{C}_{A}, find a generator matrix \mathbf{G}_{A} and a check matrix \mathbf{H}_{A}, and determine the resulting minimum distance $d_{\text {min,A }}$.
e) For encoder B , assume that \mathcal{C}_{1} is a $(7,4)_{2}$ Hamming code and \mathcal{C}_{2} is a single-parity-check code. Specify the blocklength and dimension of \mathcal{C}_{2}. Calculate the rate R_{B} of \mathcal{C}_{B}, find a generator matrix \mathbf{G}_{B} and a check matrix \mathbf{H}_{B}, and determine the resulting minimum distance $d_{\text {min,B }}$.

Encoder A:

Encoder B:

Figure 1: The two encoders.

Problem 3 (20 credits)

Consider the set of all cyclic codes of length $N=4$ over $\operatorname{GF}(4)=\{0,1,2,3\}$.
a) Determine the addition and multiplication tables for $\mathrm{GF}(4)$.
b) Find all generator polynomials and the corresponding code rates. Which of these generator polynomials do not define a useful code?
c) Choose a generator polynomial of degree 2 and use two different methods to check whether $v(x)=2 x^{3}+2 x^{2}+1$ is a codeword.

Problem 4 (20 credits)

Consider a Reed-Solomon code \mathcal{C} over $\operatorname{GF}(q)$ with minimum Hamming distance $d_{\text {min }}$ and frequency parameter k_{1}.
a) Show that the dual code \mathcal{C}^{\perp} of \mathcal{C} is a Reed-Solomon code. Determine the minimum Hamming distance $d_{\text {min }}^{\perp}$ and the frequency parameter k_{1}^{\perp} of \mathcal{C}^{\perp}.
b) Use the results of a) to show that no self-dual Reed-Solomon code can exist (\mathcal{C} is self-dual if $\mathcal{C}=\mathcal{C}^{\perp}$).
c) Design a Reed-Solomon code over $\operatorname{GF}(8)=\left\{0,1, z, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}\right\}(z \in \operatorname{GF}(8)$ is a primitive element, i.e., $z^{3}+z+1=0$) such that its dual code has minimum Hamming distance $d_{\text {min }}^{\perp}=5$ and frequency parameter $k_{1}^{\perp}=3$.
c1) Determine the blocklength $N=N^{\perp}$, the rates R and $R^{\perp}, d_{\text {min }}$, and k_{1}.
c2) Calculate the generator polynomials $g(x)$ and $g^{\perp}(x)$ and the check polynomials $h(x)$ and $h^{\perp}(x)$.
c3) For the dual code, consider systematic encoding of the dataword $\mathbf{u}=\left(z^{0} z^{5} z^{1}\right)^{T}$ in the frequency domain. Determine the corresponding codeword in the frequency domain and in the time domain.
c4) Check whether $\mathbf{c}=\left(z^{0} z^{5} z^{3} z^{1} z^{6} z^{4} z^{2}\right)^{T}$ is a valid codewort of the dual code.

