Digital Communications 2 Written exam on March 05, 2014

Institute of Telecommunications Vienna University of Technology

Please note:

- You are allowed to use the official lecture notes, a pocket calculator, and a collection of mathematical formulas.
- You are not allowed to use handwritten lecture notes, materials from exercise classes, and precalculated problems.
- Readable handwriting and a clear presentation are mandatory.
- Provide detailed derivations and calculations. If results from the lecture notes are used, they have to be referenced unambiguously.
- Due to changes of the modus operandi for the exercise class since the 08/09 winter semester, the maximum number of achievable credits will be scaled from 80 to 90 for the corresponding candidates.

Problem 1 (20 credits)

Consider the $(8,4)_2$ extended binary Hamming code C, which consists of the $(7,4)_2$ Hamming code and a single parity check bit. Furthermore, consider the $(8,7)_2$ single parity check code C'.

- a) Find the generator and check matrices of C.
- **b)** Find the weight enumerators of \mathcal{C} and \mathcal{C}' .
- c) Consider transmission over a binary symmetric channel with bit inversion probability p. Find the probability of an undetected error for C and C'.

Problem 2 (20 credits)

The two encoders A and B depicted in Figure ?? implement the encoding of binary block codes C_A (minimum distance $d_{\min,A}$) and C_B (minimum distance $d_{\min,B}$), respectively. The generator matrices G_1 and G_2 define linear component codes C_1 and C_2 with minimum distances $d_{\min,1}$ and $d_{\min,2}$, respectively (note that these component codes are generally different for encoder A and encoder B).

- a) Are the codes C_A and C_B linear? Are the encoders A and B systematic, if the encoders for C_1 and C_2 are systematic?
- **b)** Find the minimum distance $d_{\min,A}$ of code C_A .
- c) Consider code $C_{\rm B}$. Is it possible that $d_{\min,\rm B} < d_{\min,2}$? Justify your answer.
- d) For encoder A, assume that both C_1 and C_2 are $(4,3)_2$ single-parity-check codes. Calculate the rate R_A of C_A , find a generator matrix \mathbf{G}_A and a check matrix \mathbf{H}_A , and determine the resulting minimum distance $d_{\min,A}$.
- e) For encoder B, assume that C_1 is a $(7, 4)_2$ Hamming code and C_2 is a single-parity-check code. Specify the blocklength and dimension of C_2 . Calculate the rate R_B of C_B , find a generator matrix \mathbf{G}_B and a check matrix \mathbf{H}_B , and determine the resulting minimum distance $d_{\min,B}$.

Figure 1: The two encoders.

Problem 3 (20 credits)

Consider the set of all cyclic codes of length N = 4 over $GF(4) = \{0, 1, 2, 3\}$.

- **a)** Determine the addition and multiplication tables for GF(4).
- **b)** Find all generator polynomials and the corresponding code rates. Which of these generator polynomials do not define a useful code?
- c) Choose a generator polynomial of degree 2 and use two different methods to check whether $v(x) = 2x^3 + 2x^2 + 1$ is a codeword.

Problem 4 (20 credits)

Consider a Reed-Solomon code C over GF(q) with minimum Hamming distance d_{\min} and frequency parameter k_1 .

- a) Show that the dual code \mathcal{C}^{\perp} of \mathcal{C} is a Reed-Solomon code. Determine the minimum Hamming distance d_{\min}^{\perp} and the frequency parameter k_1^{\perp} of \mathcal{C}^{\perp} .
- b) Use the results of a) to show that no *self-dual* Reed-Solomon code can exist (C is self-dual if $C = C^{\perp}$).
- c) Design a Reed-Solomon code over $GF(8) = \{0, 1, z, z^2, z^3, z^4, z^5, z^6\}$ $(z \in GF(8)$ is a primitive element, i.e., $z^3 + z + 1 = 0$) such that its dual code has minimum Hamming distance $d_{\min}^{\perp} = 5$ and frequency parameter $k_1^{\perp} = 3$.
 - c1) Determine the blocklength $N = N^{\perp}$, the rates R and R^{\perp} , d_{\min} , and k_1 .
 - **c2)** Calculate the generator polynomials g(x) and $g^{\perp}(x)$ and the check polynomials h(x) and $h^{\perp}(x)$.
 - **c3)** For the dual code, consider systematic encoding of the dataword $\mathbf{u} = (z^0 z^5 z^1)^T$ in the frequency domain. Determine the corresponding codeword in the frequency domain and in the time domain.
 - **c4)** Check whether $\mathbf{c} = (z^0 z^5 z^3 z^1 z^6 z^4 z^2)^T$ is a valid codewort of the dual code.