Guidelines

- Write your name and matriculation number on each sheet of paper.
- Only clearly readable exercise-elaborations are evaluated.
- Results have to be provided together with an evident way of calculation.
- Keep textual answers short and concise. Lengthy or vague statements won't gain points.

Exercise 3.1 (0.5 points)

Let X be the set of all sequences with l_{2}-norm equal to $\sqrt{2}$, i.e.,

$$
\begin{equation*}
\left\{x \in X:\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{\frac{1}{2}}=\sqrt{2}\right\} \tag{1}
\end{equation*}
$$

where x_{n} denotes the n-th element of sequence x. Consider

$$
\begin{equation*}
d=\sum_{n=1}^{\infty} x_{n} y_{n} \tag{2}
\end{equation*}
$$

with $\{x, y\} \in X$.

1. Do X and d constitute a metric space (X, d) ?
2. Calculate tight upper and lower bounds of d.
3. Consider $\{x, y\} \in X$ and the sequence y is given. Find the sequences x, for which the lower and upper bounds of the previous point are achieved.
4. Calculate the bounds for

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2} \pm \sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)^{2}, \quad\{x, y\} \in X \tag{3}
\end{equation*}
$$

5. Assume the sequences $\{x, y\} \in X$ to be given as

$$
\begin{array}{ll}
x_{n}=\sin \left(\frac{\pi}{2} n\right)\left(u_{n}-u_{n-4}\right) & n=1,2, \ldots, \infty \\
y_{n}=a_{1} \delta_{n-1}+a_{2} \delta_{n-2}+a_{3} \delta_{n-3} & n=1,2, \ldots, \infty \tag{5}
\end{array}
$$

S. Schwarz, M. Taranetz, M. Rupp
with $\left\{a_{1}, a_{2}, a_{3}\right\} \in \mathbb{R}$. The function u_{n} denotes the unit step function, i.e.,

$$
u_{n}=\left\{\begin{array}{cc}
0 & n<0 \tag{6}\\
1 & n \geq 0
\end{array},\right.
$$

and δ_{n} is the delta function.
Calculate a_{1}, a_{2} and a_{3} such that d (as given in (2)) becomes zero. Determine the number of possible solutions for $\left\{a_{1}, a_{2}, a_{3}\right\}$.

Exercise 3.2 (0.5 points)

The convergence / divergence of a series can be checked by one of the following theorems (without claiming to be exhaustive):
(I) Let $\sum a_{k}$ and $\sum b_{k}$ be series with $a_{k}, b_{k} \in \mathbb{R}^{+}$. Given that $a_{k} \leq b_{k} \forall k$, then

- If $\sum b_{k}$ converges $\Rightarrow \sum a_{k}$ converges
- If $\sum a_{k}$ diverges $\Rightarrow \sum b_{k}$ diverges
(II) Let $\sum a_{k}$ and $\sum b_{k}$ be a series with $a_{k}, b_{k} \in \mathbb{R}^{+}$and $\rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}$. If ρ is finite and $\rho \in \mathbb{R}^{+} \backslash 0$, then the series either both converge or both diverge.
(III) Let $\sum a_{k}$ be a series with $a_{k} \in \mathbb{R}^{+}$. Then for either $\rho=\lim _{k \rightarrow \infty}\left(a_{k}\right)^{\frac{1}{k}}$, or $\rho=\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}$ it holds
- if $\rho<1 \Rightarrow$ series converges
- if $\rho=1 \Rightarrow$ no statement about convergence / divergence can be made
- if $\rho>1$ or $q=+\infty \Rightarrow$ series diverges
(IV) Let $f(x)$ be a monotonically decreasing, non-negative function with support $[N, \infty)$. The series $\sum_{k=N}^{\infty} f(k)$ converges to a real number iff $\int_{N}^{\infty} f(x) d x$ is finite.
(V) Let a series be given by $\sum \frac{1}{k^{p}}$. Then,
- if $0<p \leq 1 \Rightarrow$ series diverges
- if $p>1 \Rightarrow$ series converges

Apply the theorems given above to check the convergence / divergence of the following series:

1. $\sum_{k=1}^{\infty} \frac{(2 k)^{k+2}}{(k+1)!}$
2. $\sum_{k=1}^{\infty} \frac{1}{k^{1 / 3}-1}$
3. $\sum_{k=1}^{\infty}\left[k^{4} \sin ^{2}\left(\frac{3 k}{2 k^{3}-2 k^{2}+5}\right)\right]^{k}$
4. $\sum_{k=1}^{\infty} \frac{(3 k)!+4^{k+1}}{(3 k+1)!}$
5. Extra 0.2 points: $\sum_{k=2}^{\infty} \frac{1}{k \log k}$

Hint: Use the fact that $f(k+1) \leq f(x) \leq f(k)$ implies $f(k+1) \leq$ $\int_{k}^{k+1} f(x) d x \leq f(k)$.

Exercise 3.3 (0.5 points)

A common method for optimal resource allocation in mobile cellular networks is convex optimization. A convex function satisfies the following property:

$$
\begin{equation*}
f(\theta s+(1-\theta) t) \leq \theta f(s)+(1-\theta) f(t) \tag{7}
\end{equation*}
$$

where $0 \leq \theta \leq 1$.

1. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an arbitrary norm. Show that every norm on \mathbb{R}^{n} is convex.
2. Show that the following expressions define norms on \mathbb{R}^{n}, with $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$:

- $\|\underline{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad \bullet\|\underline{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|, \quad \bullet\|\underline{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$.

MATLAB-Exercise 3.1 (1.5 points)

Consider a linear time-variant filter with linear phase

$$
\begin{equation*}
H\left(e^{j \Omega}\right)=a_{0}+\sum_{k=1}^{N} 2 a_{k} \cos (k \Omega) \tag{8}
\end{equation*}
$$

1. Analytical part: Determine the coefficients of this filter such that it optimally follows

$$
H^{(d)}\left(e^{j \Omega}\right)= \begin{cases}0.2 & ,|\Omega|<\Omega_{1} \tag{9}\\ 1 & , \Omega_{1} \leq|\Omega| \leq \Omega_{2} \\ 0.2 & ,|\Omega|<\pi\end{cases}
$$

in the Least Squares (LS) sense. This is equivalent to minimizing the metric

$$
\begin{equation*}
d_{2}\left(H^{(d)}\left(e^{j \Omega}\right), H\left(e^{j \Omega}\right)\right)=\int_{-\pi}^{\pi}\left|H^{(d)}\left(e^{j \Omega}\right)-H\left(e^{j \Omega}\right)\right|^{2} d \Omega \tag{10}
\end{equation*}
$$

Hints:

- Apply the Parseval theorem to get an equivalent statement in the time domain.
- Write the desired transfer function as a linear combination of ideal low-pass filters.
- To minimize a convex function, you can differentiate it with respect to the variables and set the derivative equal to zero.

2. MATLAB part:
(a) Implement a MATLAB code to plot the frequency response of the filter $H\left(e^{j \Omega}\right)$, as obtained from your analytic calculations for arbitrary filter order. The limit frequencies are $\Omega_{1}=\frac{\pi}{4}$ and $\Omega_{2}=\frac{3 \pi}{4}$.
(b) Compare the filters for the orders $N=\{4,10,100\}$. What do you observe?
