Guidelines

- Write your name and matriculation number on each sheet of paper.
- Only clearly readable exercise-elaborations are evaluated.
- Results have to be provided together with an evident way of calculation.
- Keep textual answers short and concise. Lengthy or vague statements won't gain points.

Exercise 3.1 (0.5 points)

Let X be the set of all sequences with l_2 -norm equal to $\sqrt{2}$, i.e.,

$$\left\{ x \in X : \left(\sum_{n=1}^{\infty} x_n^2\right)^{\frac{1}{2}} = \sqrt{2} \right\},\tag{1}$$

where x_n denotes the n-th element of sequence x. Consider

$$d = \sum_{n=1}^{\infty} x_n y_n \tag{2}$$

with $\{x, y\} \in X$.

- 1. Do X and d constitute a metric space (X,d)?
- 2. Calculate tight upper and lower bounds of d.
- 3. Consider $\{x, y\} \in X$ and the sequence y is given. Find the sequences x, for which the lower and upper bounds of the previous point are achieved.
- 4. Calculate the bounds for

$$\sum_{n=1}^{\infty} (x_n - y_n)^2 \pm \sum_{n=1}^{\infty} (x_n + y_n)^2, \quad \{x, y\} \in X$$
(3)

5. Assume the sequences $\{x, y\} \in X$ to be given as

$$x_n = \sin\left(\frac{\pi}{2}n\right)(u_n - u_{n-4}) \qquad n = 1, 2, \dots, \infty$$
(4)

$$y_n = a_1 \delta_{n-1} + a_2 \delta_{n-2} + a_3 \delta_{n-3} \qquad n = 1, 2, \dots, \infty$$
 (5)

with $\{a_1, a_2, a_3\} \in \mathbb{R}$. The function u_n denotes the unit step function, i.e.,

$$u_n = \begin{cases} 0 & n < 0\\ 1 & n \ge 0 \end{cases},$$
 (6)

and δ_n is the delta function.

Calculate a_1, a_2 and a_3 such that d (as given in (2)) becomes zero. Determine the number of possible solutions for $\{a_1, a_2, a_3\}$.

Exercise 3.2 (0.5 points)

The convergence / divergence of a series can be checked by one of the following theorems (without claiming to be exhaustive):

- (I) Let $\sum a_k$ and $\sum b_k$ be series with $a_k, b_k \in \mathbb{R}^+$. Given that $a_k \leq b_k \forall k$, then
 - If $\sum b_k$ converges $\Rightarrow \sum a_k$ converges
 - If $\sum a_k$ diverges $\Rightarrow \sum b_k$ diverges
- (II) Let $\sum a_k$ and $\sum b_k$ be a series with $a_k, b_k \in \mathbb{R}^+$ and $\rho = \lim_{k \to \infty} \frac{a_k}{b_k}$. If ρ is finite and $\rho \in \mathbb{R}^+ \setminus 0$, then the series either both converge or both diverge.
- (III) Let $\sum a_k$ be a series with $a_k \in \mathbb{R}^+$. Then for either $\rho = \lim_{k \to \infty} (a_k)^{\frac{1}{k}}$, or $\rho = \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$ it holds
 - if $\rho < 1 \Rightarrow$ series converges
 - if $\rho = 1 \Rightarrow$ no statement about convergence / divergence can be made
 - if $\rho > 1$ or $q = +\infty \Rightarrow$ series diverges
- (IV) Let f(x) be a monotonically decreasing, non-negative function with support $[N,\infty)$. The series $\sum_{k=N}^{\infty} f(k)$ converges to a real number iff $\int_{N}^{\infty} f(x)dx$ is finite.
- (V) Let a series be given by $\sum \frac{1}{k^p}$. Then,
 - if 0 series diverges
 - if $p > 1 \Rightarrow$ series converges

Apply the theorems given above to check the convergence / divergence of the following series:

1.
$$\sum_{k=1}^{\infty} \frac{(2k)^{k+2}}{(k+1)!}$$
2.
$$\sum_{k=1}^{\infty} \frac{1}{k^{1/3}-1}$$
3.
$$\sum_{k=1}^{\infty} \left[k^4 \sin^2 \left(\frac{3k}{2k^3-2k^2+5} \right) \right]^k$$
4.
$$\sum_{k=1}^{\infty} \frac{(3k)!+4^{k+1}}{(3k+1)!}$$

5. Extra 0.2 points: $\sum_{k=2}^{\infty} \frac{1}{k \log k}$ Hint: Use the fact that $f(k+1) \leq f(x) \leq f(k)$ implies $f(k+1) \leq \int_{k}^{k+1} f(x) dx \leq f(k)$.

Exercise 3.3 (0.5 points)

A common method for optimal resource allocation in mobile cellular networks is convex optimization. A convex function satisfies the following property:

$$f(\theta s + (1 - \theta)t) \le \theta f(s) + (1 - \theta)f(t)$$
(7)

where $0 \le \theta \le 1$.

- 1. Assume $f : \mathbb{R}^n \to \mathbb{R}$ is an arbitrary norm. Show that every norm on \mathbb{R}^n is convex.
- 2. Show that the following expressions define norms on \mathbb{R}^n , with $\underline{x} = (x_1, x_2, \dots, x_n)^T$:

•
$$\|\underline{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
, • $\|\underline{x}\|_1 = \sum_{i=1}^n |x_i|$, • $\|\underline{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$.

MATLAB-Exercise 3.1 (1.5 points)

Consider a linear time-variant filter with linear phase

$$H(e^{j\Omega}) = a_0 + \sum_{k=1}^N 2a_k \cos\left(k\Omega\right).$$
(8)

1. Analytical part: Determine the coefficients of this filter such that it optimally follows

$$H^{(d)}\left(e^{j\Omega}\right) = \begin{cases} 0.2 &, |\Omega| < \Omega_1\\ 1 &, \Omega_1 \le |\Omega| \le \Omega_2\\ 0.2 &, |\Omega| < \pi \end{cases}$$
(9)

in the Least Squares (LS) sense. This is equivalent to minimizing the metric

$$d_2(H^{(d)}(e^{j\Omega}), H(e^{j\Omega})) = \int_{-\pi}^{\pi} \left| H^{(d)}\left(e^{j\Omega}\right) - H(e^{j\Omega}) \right|^2 d\Omega.$$
(10)

Hints:

- Apply the Parseval theorem to get an equivalent statement in the time domain.
- Write the desired transfer function as a linear combination of ideal low-pass filters.
- To minimize a convex function, you can differentiate it with respect to the variables and set the derivative equal to zero.
- 2. MATLAB part:
 - (a) Implement a MATLAB code to plot the frequency response of the filter $H(e^{j\Omega})$, as obtained from your analytic calculations for arbitrary filter order. The limit frequencies are $\Omega_1 = \frac{\pi}{4}$ and $\Omega_2 = \frac{3\pi}{4}$.
 - (b) Compare the filters for the orders $N = \{4, 10, 100\}$. What do you observe?