Guidelines

- Write your name and matriculation number on each sheet of paper.
- Only clearly readable exercise-elaborations are evaluated.
- Results have to be provided together with an evident way of calculation.
- Keep textual answers short and concise. Lengthy or vague statements won't gain points.

(a) Signal-flow diagram.

Figure 4.1: Feedback system

Exercise 4.1 (0.5 points)

Consider the feedback system shown in Figure 4.1a. The causal system $\tilde{H}(z)$ is given by its pole-zero diagram shown in Figure 4.1b. It has two poles and two zeros. The system G is given by the non-linear relationship

$$
\begin{equation*}
G(x)=\frac{x}{\sqrt{e^{-a x}+e^{b x}}}, a, b \in \mathbb{R} \tag{1}
\end{equation*}
$$

1. (0.2points) Calculate the gain of the system $\tilde{H}(z)$.
2. (0.2 points) Calculate the gain of the system $G(\cdot)$.
(Hint: Consider the l_{2} norm.)
From now on we set $a=1$ and $b=1$.
3. (0.1 points) Assuming the additive disturbance $v_{n}=0 \forall n$, is the feedback system stable? Justify your answer.
4. (0.25 points) Assuming zero initial conditions for the systems \tilde{H} and G, derive an upper bound on $\left\|\underline{y}_{N}\right\|_{2}$ in terms of $\underline{x}_{N}, \underline{v}_{N}$ and the gains of the systems (\underline{y}_{N} is the length N vector of output samples).

Exercise 4.2 (0.5 points)

In this exercise we investigate the transmission of a signal with frequency offset ϵ. The received signal is expressed as

$$
\begin{equation*}
r_{k}=s_{k} h e^{j \epsilon k}+v_{k}, \tag{2}
\end{equation*}
$$

where s_{k} denotes the pilot symbol, which is known at the receiver. It stays constant over time, i.e., $s_{k}=s, \forall k$, and $|s|^{2}=\sigma_{s}^{2}$. The complex-valued channel h is also assumed to be static over time. Frequency offset ϵ introduces a periodic change in phase. The additive noise terms v_{k} are assumed to be independent and identically distributed (i.i.d.) complex Gaussian with variance σ_{v}^{2}, i.e., $v_{k} \sim \mathcal{C N}\left(0, \sigma_{v}^{2}\right)$.
Your task is to estimate the frequency offset at the receiver:

1. Calculate $y_{k}=r_{k} r_{k+1}^{*}$ as an observation for determining the frequency offset. Identify the signal- and noise terms, respectively.
2. Let $y_{k}=c e^{-j \epsilon}+w_{k}$, where w_{k} denotes the noise terms. Based on the previous point, calculate the Signal to Noise Ratio $(S N R) \gamma=\mathbb{E}\left[|c|^{2}\right] / \mathbb{E}\left[\left|w_{k}\right|^{2}\right]$. (Hint: w_{k} contains all terms with exponentials different from $e^{-j \epsilon}$)
3. Considering only the signal term, determine the frequency offset ϵ.
4. Next, we assume to receive M signals

$$
\begin{equation*}
r_{k}^{(m)}=s_{m} h_{m} e^{j \epsilon k}+v_{k}^{(m)}, \quad m=1,2, \ldots M, \tag{3}
\end{equation*}
$$

at the same time, where the symbols s_{m} are statistically independent. The complex-valued channel attenuations h_{m} are all different, $\mathbb{E}\left\{\left|v_{k}^{(m)}\right|^{2}\right\}=\sigma_{v}^{2}$ and $\left|s_{m}\right|^{2}=\sigma_{s}^{2}, \forall m$. We compute the M observations $y_{k}^{(m)}$ and equally combine them, which is written as $\sum_{m=1}^{M} y_{k}^{(m)}$. Calculate the SNR after combining.
5. Now we combine the M observations $y_{k}^{(m)}$ using weighting factors g_{m}, i.e., $\sum_{m=1}^{M} g_{m} y_{k}^{(m)}$. Determine the g_{m} such that the SNR after the combiner is maximized. What do you obtain for the SNR?
Hint: Try to rewrite the expression by considering the term
$p_{m}=g_{m} \sqrt{2 \sigma_{s}^{2}\left|h_{m}\right|^{2}+\sigma_{v}^{2}}$.

[^0]
Exercise 4.3 (0.5 points)

- Proof that

$$
\begin{equation*}
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|} \tag{4}
\end{equation*}
$$

is a metric, where x_{n} and y_{n} are from the vector space of real-valued sequences

$$
\begin{equation*}
\mathbb{R}^{\mathbb{N}}=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \mid x_{n} \in \mathbb{R}\right\} . \tag{5}
\end{equation*}
$$

- A norm is induced by an inner product iff it satisfies

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) . \tag{6}
\end{equation*}
$$

Prove this identity and determine, if L_{2} is a Hilbert space with inner product $\langle f, g\rangle=\int \bar{f}(x) g(x) d x$.

- Show that $d(x, y)=|\arctan (x)-\arctan (y)|$ is a metric on \mathbb{R} and determine if (\mathbb{R}, d) constitutes a complete metric space.

MATLAB-Exercise 4.1 (1.5 points)

In this MATLAB exercise, we evaluate the frequency-offset problem from Exercise 4.2 by simulations. The received signal is expressed as

$$
\begin{equation*}
r_{k}=h e^{j \epsilon k}+v_{k}, \tag{7}
\end{equation*}
$$

i.e., the all-one sequence is applied for the training symbols.

Consider a frequency offset $\epsilon=\pi / 4$. Your task is to determine and plot the average estimation error $|\hat{\epsilon}-\epsilon|^{2}$ over 2000 simulation runs for an SNR range $-20 \mathrm{~dB} \ldots 20 \mathrm{~dB}$. For each simulation run, use randn() to generate the complex valued channel(s) and the noise, and norm them properly. The following cases should be considered:

1. Single channel

Compute the average frequency offset ϵ based on one observation y_{k} by -angle $\left(y_{k}\right)$.
2. Single channel, multiple observations

Consider that we receive 5 symbols $r_{k}, k=1, \ldots, 5$, from a single channel. This results in 4 instantaneous observations $y_{k}, k=1, \ldots, 4$. Compute the frequency offset ϵ by -angle $\left(\sum_{k=1}^{4} y_{k}\right)$.
3. Multiple channels, equal weight combining

Repeat the experiment by using four independent channels simultaneously $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$. Still, all-one sequences are transmitted on all the channels. At each time instant k, four observations $\left(y_{k}^{(1)}, y_{k}^{(2)}, y_{k}^{(3)}, y_{k}^{(4)}\right)$ are available. Compute the frequency offset ϵ using the equal weight combining by - angle ($\left.\sum_{m=1}^{4} y_{k}^{(m)}\right)$.
4. Multiple channels, SNR-optimal combining

Repeat the four-channel experiment. Employ the weighting factors, as derived in Exercise 4.2/5 and compute the frequency offset by -angle $\left(\sum_{m=1}^{4} g_{m} y_{k}^{(m)}\right)$. Compare the result with the equal weight combining.

[^1]
[^0]: S. Schwarz, M. Taranetz, M. Rupp

[^1]: S. Schwarz, M. Taranetz, M. Rupp

