Guidelines

- Write your name and matriculation number on each sheet of paper.
- Only clearly readable exercise-elaborations are evaluated.
- Results have to be provided together with an evident way of calculation.
- Keep textual answers short and concise. Lengthy or vague statements won't gain points.

Exercise 7.1 (0.5 points)

Consider a set of Hermitian matrices $A^{(i)}, i=1, \ldots, N$ of dimension $M \times M$.

1. Show that the following matrices are also Hermitian:
(a) $\sum_{i=1}^{N} A^{(i)}$
(b) $A^{(i)}\left(A^{(i)}\right)^{H}$
(c) $\sum_{i=1}^{N} A^{(i)}\left(A^{(i)}\right)^{H}$
2. Assume that all Hermitian matrices $A^{(i)}, i=1, \ldots, N$ can be diagonalized by the same unitary matrix Q. Determine tight upper and lower bounds of $\sum_{i=1}^{N} \frac{x^{H} A^{(i)} x}{\underline{x}^{H} \underline{x}}$ in terms of eigenvalues of the matrices $A^{(i)}$.
3. Show that $\sum_{i=1}^{N}\left(\underline{\underline{x}}^{H} A^{(i)} \underline{\underline{x}} \underline{\underline{x}}\right)^{2}$ is bounded by

$$
\begin{equation*}
\frac{1}{N}\left(\frac{\underline{x}^{H} \sum_{i=1}^{N} A^{(i)} \underline{x}}{\underline{x}^{H} \underline{x}}\right)^{2} \leq \sum_{i=1}^{N}\left(\frac{\underline{x}^{H} A^{(i)} \underline{x}}{\underline{x}^{H} \underline{x}}\right)^{2} \leq \sum_{i=1}^{N} \frac{\underline{x}^{H} A^{(i)} A^{(i), H} \underline{x}}{\underline{x}^{H} \underline{x}} \tag{1}
\end{equation*}
$$

where \underline{x} is an arbitrary non-zero vector.
(Hint: use Cauchy-Schwarz.)

Exercise 7.2 (0.5 points)

Consider a square matrix Q with $\|Q\|<1$ and the norm $\|\cdot\|$ satisfies the submultiplicative property

1. Proof the following inequality:

$$
\left\|(I-Q)^{-1}\right\| \leq \frac{1}{1-\|Q\|}
$$

(Hint: Use the Neumann expansion (Theorem 4.2))
2. Furthermore show

$$
\left\|I-(I-Q)^{-1}\right\| \leq \frac{\|Q\|}{1-\|Q\|}
$$

(Hint: Show that $\left.I-(I-Q)^{-1}=-Q(I-Q)^{-1}\right)$
Now assume A to be nonsingular and E such that $\left\|A^{-1} E\right\|<1$.
3. Show that $A+E$ is nonsingular. (Hint: utilize previous results)
4. Let $Q=-A^{-1} E$. Show that Q satisfies:

$$
(A+E)^{-1}=(I-Q)^{-1} A^{-1}
$$

5. Show that $(A+E)^{-1}-A^{-1}=-A^{-1} E(A+E)^{-1}$
6. Finally, show that:

$$
\begin{equation*}
\left\|(A+E)^{-1}-A^{-1}\right\| \leq \frac{\left.\left\|A^{-1}\right\|\right|^{2}\|E\|}{1-\|Q\|} \tag{2}
\end{equation*}
$$

Exercise 7.3 (0.75 points)

Consider the iterative algorithm introduced in Example 4.24 in the lecture notes. In this exercise, we apply the algorithm for calculating the inverse R^{-1} of a Hermitian matrix $R=A A^{H}$ of dimension $N_{R} \times N_{R}$.

1. Consider the modified algorithm

$$
\begin{equation*}
W_{k+1}=W_{k}+\mu_{k} W_{k}\left(I-R W_{k}^{H} W_{k}\right) \tag{3}
\end{equation*}
$$

with bounded step size

$$
\begin{equation*}
0<\mu_{k}<\frac{2}{\sigma_{k}^{(\max)}\left[1+\sigma_{k}^{(\max)}\right]} \tag{4}
\end{equation*}
$$

where $\sigma_{k}^{(m a x)}$ denotes the maximum singular value of $W_{k} A$. Assume that the Singular Value Decomposition (SVD) of $W_{k} A$ is $W_{k} A=U \Sigma_{k} V^{H}$.
Your task is to analytically show that the modified algorithm as given in Equation (3) converges towards $W_{\infty}^{H} W_{\infty}=R^{-1}=\left(A A^{H}\right)^{-1}$.
(Hint: multiply Equation (3) with A from the right and show that the singular values in Σ_{k} converge towards 1, given Equation (4) is satisfied. Use this results to proof the convergence of $W_{\infty}^{H} W_{\infty}$.)
2. Write a MATLAB program which performs the iterative algorithm to compute the inverse. Use the relative Mean Squared Error (MSE)

$$
\begin{equation*}
M S E_{k}=\frac{1}{N_{R}^{2}}\left\|R W_{k}^{H} W_{k}-I\right\|_{F}^{2} \tag{5}
\end{equation*}
$$

to show the convergence. Your output should be a plot of MSE versus the iteration step. For the step size calculation, use the relation

$$
\begin{equation*}
0<\frac{2}{0.25+2 \lambda_{k}^{(\max)}}<\frac{2}{\sigma_{k}^{(\max)}\left[1+\sigma_{k}^{(\max)}\right]} \tag{6}
\end{equation*}
$$

where $\lambda_{k}^{(\max)}=\left(\sigma_{k}^{(\max)}\right)^{2}$ denotes the maximum eigenvalue of $W_{k} R W_{k}^{H}$. Generate a suitable matrix for inversion (of dimension $N_{R}=5$) by using the randn command in MATLAB. Set $W_{0}=I$.

MATLAB-Exercise 7.1 (1.25 points)

Consider the following signal model:

$$
\begin{equation*}
s_{k}=\sum_{i=1}^{p} a_{p} e^{j 2 \pi f_{p} k}+n_{k} \tag{7}
\end{equation*}
$$

The signal is a superposition of p sinusoids with amplitudes a_{p} and frequencies f_{p} and it is disturbed by additive white Gaussian noise n_{k} of variance $\sigma_{n}^{2}=0.1$.

1. Assume $p=3, f_{1}=0.1, f_{2}=0.25, f_{3}=0.4$ and $a_{1}=\frac{1}{\sqrt{2}}, a_{2}=\frac{1}{\sqrt{4}}$ and $a_{3}=\frac{1}{\sqrt{8}}$. Implement the signal model in Matlab and generate 100 samples. In order to make your results reproducible, use a fixed seed to setup the random number generator of Matlab. To generate a random number stream with a fixed seed use the following code:

$$
\begin{equation*}
\text { stream }=\text { RandStream('mt19937ar', 'Seed', 1); } \tag{8}
\end{equation*}
$$

When you generate the random noise, handover this stream to the function randn (the Matlab documentation of randn tells you how to do that).
2. From the generated noisy signal-samples, estimate the number of sinusoids p based on an estimate of the autocorrelation matrix of the signal of size 20×20. Do NOT use Matlab internal functions like xcorr or cov for that purpose. Plot (stem) the eigenvalues (eig) of the autocorrelation matrix.
3. Estimate the noise power from the appropriate eigenvalues of the autocorrelation matrix and state the estimated value.
4. Using the PHD algorithm estimate the frequencies f_{p} of the sinusoids. Plot your decision function and state the estimated values.
5. Using the MUSIC algorithm estimate the frequencies f_{p} of the sinusoids. Plot your decision function and state the estimated values.
6. Repeat the same steps for a signal length of 1000 samples.

[^0]
[^0]: S. Schwarz, M. Taranetz, M. Meyer, M. Rupp

