2 Basic Math, Part 2

Exercise 2.1

Write the vector $\underline{v}=[1,-2,5]$ in \mathcal{R}^{3} in form of a linear combination of the vectors $\underline{e}_{1}=[1,1,1], \underline{e}_{2}=[1,2,3], \underline{e}_{3}=[2,-1,1]$.

Solution: $\underline{v}=-6 \underline{e}_{1}+3 \underline{e}_{2}+2 \underline{e}_{3}$.

Exercise 2.2

Write the vector $\underline{v}=[2,-5,3]$ in \mathcal{R}^{3} in form of a linear combination of the vectors $\underline{e}_{1}=[1,-3,2], \underline{e}_{2}=[2,-4,-1], \underline{e}_{3}=[1,-5,7]$.

Solution: The according system of equations is inconsistent and thus has no solution. The vector \underline{v} does not lie in the space spanned by the vectors $\underline{e}_{1}, \underline{e}_{2}$ and \underline{e}_{3}.

Exercise 2.3
Show that the vectors $\underline{u}=[1,2,3], \underline{v}=[0,1,2]$ and $\underline{u}=[0,0,1]$ span the space \mathcal{R}^{3}.

Exercise 2.4

Evaluate if the following vectors defined in \mathcal{R}^{3} are linear dependent:
a. $[1,-2,1],[2,1,-1],[7,-4,1]$
b. $[1,-3,7],[2,0,-6],[3,-1,-1],[2,4,-5]$
c. $[1,2,-3],[1,-3,2],[2,-1,5]$
d. $[2,-3,7],[0,0,0],[3,-1,-4]$

Solutions:
a. linear dependent
b. linear dependent
c. linear independent
d. linear dependent

Exercise 2.5

For each of the following operators $T: \mathcal{R}^{3} \rightarrow \mathcal{R}^{3}$, derive all eigenvalues and a basis for the eigenspace:
a. $T(x, y, z)=(x+y+z, 2 y+z, 2 y+3 z)$
b. $T(x, y, z)=(x+y, y+z,-2 y-z)$
c. $T(x, y, z)=(x-y, 2 x+3 y+2 z, x+y+2 z)$

Solutions:
a. $\lambda_{1}=1, \underline{u}=[1,0,0] ; \quad \lambda_{2}=4, \underline{v}=[1,1,2]$
b. $\lambda_{1}=1, \underline{u}=[1,0,0]$. There are no other eigenvalues in \mathcal{R}
c. $\lambda_{1}=1, \underline{u}=[1,0,-1] ; \quad \lambda_{2}=2, \underline{v}=[2,-2,-1] ; \quad \lambda_{3}=3, \underline{w}=[1,-2,-1]$

Exercise 2.6

Evaluate the Jordan normal form of
1.

$$
\left[\begin{array}{lll}
4 & 1 & 3 \\
0 & 4 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

2.

$$
\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

Solutions:
1.

$$
\left[\begin{array}{lll}
4 & 1 & 0 \\
0 & 4 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

2.

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

Exercise 2.7

With the help of the Gram-Schmidt procedure to orthogonalize, evaluate a orthonormal basis of the subspace W of \mathcal{C}^{3}, which is spanned by $\underline{v}_{1}=[1, i, 0]$ and $\underline{v}_{2}=[1,2,1-i]$.

Solution: $\quad \underline{u}_{1}=\left[\frac{1}{\sqrt{2}}, \frac{i}{\sqrt{2}}, 0\right] ; \quad \underline{u}_{2}=\left[\frac{1+2 i}{\sqrt{18}}, \frac{2-i}{\sqrt{18}}, \frac{2-2 i}{\sqrt{18}}\right]$

