
389.166 SP1 - Exercise 1 - Basics I. 16. October 2014

Guidelines

• Write your name and matriculation number on each sheet of paper.

• Only clearly readable exercise-elaborations are evaluated.

• Results have to be provided together with an evident way of calculation.

• Keep textual answers short and concise. Lengthy or vague statements won’t
gain points.

Exercise 1.1 (0.5 points)
Consider the time-invariant system T in Figure 1.1. From the input sequences
x1,n, x2,n and x3,n to the system T result the corresponding output sequences y1,n,
y2,n and y3,n, as shown in the figure.

1. (a) Is the system T linear?

(b) From the given input/output relations, can you determine which out-
put sequence yn results from an input sequence xn = δn? If not, which
input/output relations let you do so?

(c) Find all possible input sequences xn, for which the system responses
of the system T can be determined from the given information only.

In the following, consider the linear system L in Figure 1.2. From the input
sequences x1,n, x2,n and x3,n to the system L result the corresponding output
sequences y1,n, y2,n and y3,n, as shown in the figure.

2. (a) Is the system L time-invariant?

(b) What output sequence yn results from an input sequence xn = δn? Cal-
culate the impulse response for the time instance n = 0, L[δn] = h0,n.

Terms: system properties, linearity, time invariance.

Exercise 1.2 (0.5 points)
Consider a causal linear system whose transfer function is described by the poly-
nomial1

H(q−1) =

nH−1∑
i=0

hiq
−i.

1The linear operator q−1 denotes the unit delay defined as q−1 [xk] = xkq
−1 = xk−1.
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Figure 1.1: time-invariant system T .

-2

-2

n

x1,n

n

y1,n

L
-2

1

-2
0

1-1 0 1 2 3

n

x3,n

n

y3,n

L
1 1

2 2

0 1 1 2
0

n

x2,n

n

y2,n

L
1

-2

1

0
-1 0 1

2
3

-1
-2

3

Figure 1.2: Linear system L.
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An input sequence xk that passes through this system shall be equalized by

G(q−1) =

nG−1∑
i=0

giq
−i,

where nG equalizer coefficients gi are used. The setup is depicted in Figure 1.3.

Figure 1.3: Basic setup of linear system and its equalizer.

Assuming that we know H(q−1), our objective is to determine G(q−1). In order
to obtain an undistorted signal after D time instances, i.e., yk+D = xk, we have
to determine the equalizer coefficients that satisfy H(q−1)G(q−1) = q−D.
Assume finite order polynomials (nG, nH <∞).

1. Write the problem in matrix-vector form — how many equations and how
many unknowns do we have? How many solutions does the problem have
in general, and why?
Hint: you may assume fixed transfer function lengths at first, e.g.: nH =
5, nG = 2 and also nH = 2, nG = 5. Then, try to find the general form.

2. Let us now separate the polynomials according to

H(q−1) = H(1)(q−1) +H(2)(q−1) =
n−1∑
i=0

hiq
−i +

2n−1∑
i=n

hiq
−i,

G(q−1) = G(1)(q−1) +G(2)(q−1) =
n−1∑
i=0

giq
−i +

2n−1∑
i=n

giq
−i,

where nH = nG = 2n (nH is divisible by 2). Utilizing the separated poly-
nomials, we construct the setup depicted in Figure 1.4.

Figure 1.4: Separated setup of linear system and equalizer.
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Note that the overall transfer function is different from that in Figure 1.3.
Write the problem of determining the equalizer coefficients in matrix-vector
form (as a single system of linear equations). How many equations and how
many unknowns do we have in general? For which value(s) of nH does a
solution exist?

Utilizing the separated blocks (H(1)(q−1), H(2)(q−1), G(1)(q−1), G(2)(q−1)),
draw the setup that leads to the same overall transfer function as the setup
in Figure 1.3.

3. Let us delay the upper branch by n time instances as depicted in Figure 1.5.

Figure 1.5: Separated setup with delay in branch 1.

How does the new matrix-vector form of the problem look like? How many
viable (useful) equations does the system feature? How many solutions
does the problem have in general, and why?

4. Now consider the setup in Figure 1.4 with

H(1)(q−1) = 1 + q−1,

H(2)(q−1) = −1 + q−2.

Note that these polynomials describe distinct transfer functions and were
not obtained by separating a larger transfer function. Show that for this
specific choice of system polynomials, there exists no (finite length) solution
for the zero-forcing equalizer. Why is that?

How about the alternative polynomials

H(1)(q−1) = 2− 3q−1 + q−2,

H(2)(q−1) = 12− 7q−1 + q−2?

Terms: linear operators, polynomial description, matrix-vector description, zero-
forcing equalizer, Bezout’s theorem.
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Exercise 1.3 (0.5 points)
Consider the lossless resonant circuit shown in Figure 1.6.

Figure 1.6: Lossless LC resonant circuit.

1. Derive the differential equation connecting the voltage U(t) and the current
I(t).

2. Assuming zero initial conditions (I(0−) = 0A, I ′(0−) = 0A/s, U(0−) =
0V, U ′(0−) = 0V/s) compute the corresponding voltage U(s) in the Laplace
domain, in terms of the Laplace transform of the current I(s).

Considering that I(s) is the input and U(s) is the output of the system,
determine the transfer function H(s).

We now intend to examine the system in case of sampled signals. The bilinear
transform is a widely used method to design digital filters from already designed
analog filters, the s-domain is mathematically transformed to the z-domain by

H(z) = H(s)
∣∣∣s= 2

T
z−1
z+1

.

3. Compute the transfer function H(z) of the LC resonant circuit. If you were
not able to solve the previous problem, assume H(s) = α1s

1+α2s2
.

4. Bring the transfer function into its canonical form and determine the com-
panion form of the filter, i.e., determine A, b, c, d.

5. Are there choices of coefficient a1 (see canonical form) for which the system
is stable? (You may use Matlab to check the necessary condition(s).)

Terms: Laplace transform, transfer function, canonical form, companion form,
stability.
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MATLAB-Exercise 1.1 (1 point)
In this Matlab exercise, we will investigate Bezout’s theorem according to a prac-
tical example. You will learn to use some basic functions of Matlab and how to
write your own functions. Numerical issues with ill-conditioned matrices will also
be investigated.
Consider the setup in Figure 1.7. A signal xk is transmitted over a single antenna
and received on two separate antennas. The respective channels are described by
the polynomials H(1)(q−1) and H(2)(q−1). For each branch, an equalizer is used.
The equalized receive signal shall obey yk = q−Dxk.

Figure 1.7: SIMO transmission link with equalizer.

1. Write a new function [X] = myToeplitz(x,N) with input arguments x,N
and output X. The function takes vector x and arranges it in a Toeplitz
matrix X of dimension (2N − 1)×N . In order to meet the size constraint,
you have to add zeros to x (”zero padding”) if length(x)<N and remove
elements from x if length(x)>N.

2. From previous measurements, we gained perfect channel knowledge:

H(1)(q−1) = 0.8 + 0.5q−1,

H(2)(q−1) = 0.3 + 0.6q−1 + 0.1q−2.

Utilizing the matrix-vector notation and Matlab (with myToeplitz func-
tion), compute the equalizer coefficients that satisfy

H(1)(q−1)G(1)(q−1) +H(2)(q−1)G(2)(q−1) = q−D.

To compute coefficient vector g in an equation such as2 Hg = e, use pseudo-

inverse H† = HT (HHT )−1 so that ĝ = H†e. In our case, the pseudo inverse

2Hint: H is a matrix to perform convolution of the channel transfer functions with the
equalizer transfer functions. Note that transfer function H(1)(q−1) has less coefficients than
H(2)(q−1), you have to perform zero padding in the matrix-vector notation to obtain the proper
matrix H.
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yields the unique minimum norm solution to the underdetermined system
of equations Hg = e which in general has an infinite number of solutions.
You will hear about pseudo-inverses and minimum norm solution later in
this course (Chapter 3 - Approximations).

In order to compute ĝ in Matlab, try the following variants:

• use pseudo-inverse function pinv

• use left matrix divide \
• use inv for matrix inversion and .’ for transposition

Verify your solution by computing

x̂k =
(
H(1)(q−1)G(1)(q−1) +H(2)(q−1)G(2)(q−1)

)
xk

in matrix-vector notation with an all-one input vector x = [1,...,1]T of length
M = 10 and the equalizer coefficients ĝ.

Hint: the vector ê = Hĝ has to be arranged in a Toeplitz matrix in order to
perform convolution with input signal x.

Compute the mean squared error between x and its equalized version x̂ =
[x̂1,...,x̂2M−1]

T :

MSE =
1

M

M∑
i=1

|xi − x̂i+D|2.

It should be numerically zero, i.e., in the order of 10−30.

• Try various values of D = 0,1,2,... and see if the equalizer still works.

• Is there a maximal D where Matlab prompts an error? If so, how can
you fix this?

3. Let us now investigate numerical issues with poorly conditioned matrices.
Assume the channels

H(1)(q−1) = 1 + 0.5q−1,

H(2)(q−1) = 1 + (0.5 + ε)q−1.

From Bezout’s theorem, we know that an FIR equalizer is only feasible for
coprime polynomials, which is not satisfied in case of ε = 0. But what
happens if ε is very small and numerical methods are employed?

Use Matlab to compute MSE(ε), where ε shall range logarithmically (use
logspace) from 10−20 to 10−1.

• Plot MSE vs. ε in a double logarithmic plot (use loglog).
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• Compare all three variants (see 2.) of computing ĝ in the same figure.

• Do you observe differences in the numerical fidelity of the equalized
signal?

(Note: for small ε, Matlab will probably throw warnings at you.)

In order to compute the coefficient vector ĝ in 2., matrix H had to be
pseudo-inverted. A matrix is said to be poorly- or ill-conditioned if its
condition number κ(H) is large, which implies that the matrix is almost
singular. You can compute the condition number of a matrix in Matlab
using cond.

• Plot the condition number κ(H) vs. ε in a double logarithmic plot.

• Can you observe the value of κ(H) where the pseudo-inverse of H
becomes numerically singular (HHT becomes rank-deficient)?

Matlab help: Useful functions for this exercise are zeros, ones, length, circshift,
logspace, loglog, max, cond, inv, pinv, figure. By typing help XXX into the
command window, Matlab prompts the help to function XXX. You can concate-
nate matrices horizontally with C = [A,B] and vertically with C = [A;B].
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