Guidelines

- Write your name and matriculation number on each sheet of paper.
- Only clearly readable exercise-elaborations are evaluated.
- Results have to be provided together with an evident way of calculation.
- Keep textual answers short and concise. Lengthy or vague statements won't gain points.

Exercise 3.1 (0.5 points)

Show that the Galois Field (GF) 3 fulfills all field properties.
The tables for the ' + ' and ' $*$ ' operation are given as

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

$*$	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Terms: Galois field, field properties.
Exercise 3.2 (0.5 points)
Consider the sequence

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}+\frac{A}{x_{n}}}{2} \tag{1}
\end{equation*}
$$

with

$$
n=0,1,2 \ldots, \quad x_{0} \neq 0, \quad A>0
$$

1. (a) Consider $A=9$. Does the sequence converge in \mathbb{Q} ? Does it converge in \mathbb{R} ? If yes, to which value does it converge? Is it a Cauchy sequence in $\mathbb{Q} /$ in \mathbb{R} ?
(b) Consider $A=2$. Does the sequence converge in \mathbb{Q} ? Does it converge in \mathbb{R} ? If yes, to which value does it converge? Is it a Cauchy sequence in $\mathbb{Q} /$ in \mathbb{R} ?
Do not only examine convergence, but also if the definition for Cauchy sequences holds:

$$
\forall \epsilon>0 \quad \exists N \in \mathbb{N} \quad \forall m, n \geq N:\left|x_{m}-x_{n}\right|<\epsilon
$$

Do all elements of the sequence lie in the corresponding set?

Hint: Try to find a lower and upper bound for x_{n+1}; these bounds can also be used to show that it is a Cauchy Sequence, if the sequence converges; if the sequence does not converge, the proof is more tricky - don't worry too much, if you can't do it...

The sequence introduced in Equation (1) can be used to approximate the square root of a number. It is only a special case of a different method to find the roots of an arbitrary function. The general sequence is given by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{2}
\end{equation*}
$$

with

$$
n=0,1,2 \ldots
$$

2. (a) Find the sequence to approximate the cubic root of a number by using Equation (2) applied at $f(x)=x^{3}-V, \quad V>0, \quad x_{0}>0$.
(b) Show that the sequence converges to $\sqrt[3]{V}$.
(c) The sequence does not converge for some $x_{0}<0$. Find such a value.

Terms: Cauchy sequence, convergence.
Exercise 3.3 (0.5 points)
Consider the phase vector

$$
\mathbf{v}=\left[\begin{array}{c}
\exp \left(j \phi_{1}\right) \\
\exp \left(j \phi_{2}\right)
\end{array}\right], \quad \phi_{1}, \phi_{2} \in \mathbb{R}
$$

and a vector

$$
\mathbf{p}=\left[\begin{array}{l}
a \\
b
\end{array}\right], a, b \in \mathbb{C} .
$$

1. Assume given \mathbf{p} and variable \mathbf{v}. Which achievable points c can be reached by the inner product $c=\langle\mathbf{v}, \mathbf{p}\rangle$? Draw the region in the complex plane.
2. Given an achievable point c and a fixed \mathbf{v}, how do you find \mathbf{p} ? How many solutions for \mathbf{p} do exist?
3. Given an achievable point c and a fixed \mathbf{p}, how do you find \mathbf{v} ?

Hint: the law of cosines may be helpful.
How many solutions for \mathbf{v} do exist?
Terms: inner product, law of cosines, complex numbers.

MATLAB-Exercise 3.1 (1 points)

In this exercise, we want to visualize our findings from exercise 3.2 .

1. Reconsider Equation (1). Now let $A=64$ and $x_{0}=1$. Plot the whole sequence for $n=1 \ldots 10$. For each iteration-step, plot x_{n} and $y_{n}=\frac{A}{x_{n}}$ as the two sides of a rectangle with the area A.
2. Now, reconsider Equation (2) for the approximation of the cubic root of A. Now let $A=27$ and $x_{0}=10$. Plot the function $f(x)=x^{3}-A$ and for each iteration plot the tangent to the function $f(x)$ and check where it intersects with the x -axis.
