
389.166 SP1 - Exercise 7 - Linear Operators 16. January 2015

Guidelines

• Write your name and matriculation number on each sheet of paper.

• Only clearly readable exercise-elaborations are evaluated.

• Results have to be provided together with an evident way of calculation.

• Keep textual answers short and concise. Lengthy or vague statements won’t
gain points.

Exercise 7.1 (0.5 points)
Consider the matrix A:

A =

 5 0 0
0 −1 −2
0 3 4


1. Calculate the eigenvalues λ1,2,3 and the corresponding eigenvectors v1,2,3 of
A.

2. Now construct a Hermitian matrix H (with the help of MATLAB) by the
means of

H = λ1v1v
H
1 + λ2v2v

H
2 + λ3v3v

H
3

and again use MATLAB to calculate the eigenvalues and eigenvectors of
H. Why are not all eigenvectors and eigenvalues of the matrices A and H
equal? Which one is equal and why?

3. Now let us construct a Hermitian matrix R that has the following eigenval-
ues and -vectors:

λ1 =2⇒ X1 = {q
1
}

λ2 =3⇒ X2 = {q
2
,q

3
}

q
1

=
1√
2

 1
0
−1

 , q
2

=
1√
6

 1
−2
1

 , q
3

=
1√
3

 1
1
1


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Consider another vector x:

x = aq
1

+ bq
2

+ cq
3
.

4. Now let a = 0, b =
√
6

λ2
, c =

√
3

λ2
and calculate

y = Rx

for these factors.

5. Can you find a combination a,b,c so that

y = Rx = 0

other than the trivial solution?

6. Reformulate the expression Rnx in terms of λ1,2, q1,2,3, a,b,c.

Terms: Invariant subspaces of a matrix, Hermitian matrices.
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Exercise 7.2 (0.5 points)
Consider the term

HHH + αIn, H ∈ Cm×n, α ≥ 0,

where the superscript H denotes the Hermitian adjoint (conjugate transpose) of
a vector or matrix.

1. What are the properties of matrix (linear operator) A = HHH? What can
you tell about the eigenvalues and eigenvectors of such a matrix?

2. Find vectors v of unit norm that minimize / maximize the quadratic form

vH
(
HHH + αIn

)
v

as functions of the eigenvectors of HHH and α.

3. Find vectors v of unit norm that minimize / maximize the quadratic form

vH
(
HHH + αIn

)−1
v

as functions of the eigenvectors of HHH and α.

4. Let Q =
[
h1 . . . hn

]
denote the matrix whose columns hi are the eigen-

vectors of HHH. Now consider the matrix G = Q+ βIn; how do you have
to choose β ∈ C in order for G to be a Hermitian matrix, how for an or-
thogonal matrix?

5. Given G from 4. with β = 0, find vectors v of unit norm that minimize /
maximize the quadratic form

vHGH
(
HHH + αIn

)
Gv.

Terms: Eigenvalues, spectral decomposition, quadratic form, Rayleigh quotient.
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Exercise 7.3 (0.5 points)
Consider positive definite Hermitian matrices A and B.
Find vectors f that minimize the following terms:

1.

fHAf

fHf
+

fHf

fHAf

2. (
fHAf

fHf
− 1

)(
fHAf

fHf
+ 1

)

3.

fHAf

fHBf

4.

fHAf

fHf
+ (fHf − 3)2

Terms: Rayleigh quotient, quadratic form, Cholesky decomposition.
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MATLAB-Exercise 7.1 (1 point)
In this exercise, you will learn about image compression utilizing a method called
compressed sensing. Classical image compression techniques require to store the
whole data before compression can be applied – compressed sensing allows to
compress the data while sampling it. It is thus never required to store the whole
data but just a bunch of samples, which is advantageous in the age of big data.
You will learn how the sampling works and compare different methods to recon-
struct the data from the samples.

Preliminaries: Consider a data vector x ∈ RN . The data shall be sampled
according to y = Ax, where the columns of matrix A ∈ RM×N are the sampling

basis functions, and y ∈ RM are the samples we actually store. Reconstructing
x implies solving a system of M equations. If we choose M < N , the system is
underdetermined – the solution for x is thus not unique and will in general differ
from the original data. However, if the data vector x has only K � N nonzero
entries, it can be reconstructed perfectly from M < N compressed sensing samples
y if the following conditions are met:

• x ∈ RN is K-sparse, i.e., has K � N nonzero entries,

• the number of samples in y obeys

M =

⌈
cK log

(
N

K

)⌉
, (1)

(the proper choice of c is investigated in this exercise)

• at least 2K columns of A are linearly independent.

Compressed sensing reconstruction searches for the data vector x that satisfies

xCS = arg min
x′
‖x′‖0 subject to Ax = y. (2)

The pseudo-norm ‖x′‖0 counts the number of nonzero elements in x′; we thus
search for the sparsest solution that satisfies Ax′ = y. For comparison, using
least squares reconstruction with the pseudo-inverse of A yields

xLS = arg min
x′
‖x′‖2 subject to Ax = y, (3)

i.e., the solution with the minimal l2-norm. You will learn how this detail affects
the reconstruction of an image. Images are known to be compressible if repre-
sented in an appropriate basis as x = Dz (x is the compressed representation of
z using basis D). This means that the energy of z is compressed into very few co-
efficients in x, while the majority of coefficients in x stores almost no energy. We
will use the Discrete Cosine Transform (DCT) to perform energy compression.
Using compressible data instead of truly sparse data, the compressed sensing
recovery yields an approximation of the true data. Let us investigate this now.
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1. We first consider the case of truly sparse data.

• Load mesh16.mat into Matlab, an array z should appear in the workspace.
Visualize it using imshow.

Handling monochrome images, we operate on 2-dimensional arrays. It is
computationally efficient to perform processing on blocks rather than the
whole image.

• Consider blocks of size 16× 16 pixels.

• Perform a blockwise 2-dimensional DCT on all blocks of ”image” z,
use e.g. dct2.

• Count the number of nonzero elements K per block in DCT domain.
(Note that for the mesh16 ”image” z, K should be equal for all blocks.)

• Compute sparsity

δ =
K

N
, (4)

where N is the total number of pixels per block.

Let us now prepare compressed sensing. Note that the DCT could be incor-
porated into sampling directly as y = ADz = Ax, considering vectorized
versions of the data (matrix D performs DCT.)

• Compute M as a function of c, δ and N by utilizing Equations (1)
and (4).

• Determine M for the previously computed sparsity δ (should be equal
for all block) and c = 2.5.

• Generate a sensing matrix A ∈ RM×N with normal distributed entries
ai,j ∼ N (0,1) (zero mean, unit variance). Normalize the columns of A
so that they have unit l2-norm. Omitting the details, this is one way
of creating an appropriate sensing matrix for our problem.

Now we are ready to perform compressed sensing and the reconstruction
from the samples. Apply the following steps block-wise in DCT domain:

• Perform compressed sensing using vectorized versions of the DCT
blocks as y = Ax, where x ∈ RN stores the DCT samples.

• Perform compressed sensing reconstruction of x using function CSrec

(details see Matlab code). This function approximately solves Equa-
tion (2) in an iterative manner. We obtain xCS.

• For comparison, perform least squares reconstruction of x from y using
A (use Matlab function pinv). We obtain xLS.
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• After rearranging the reconstructed data vectors in blocks of size
16× 16 (original order), apply the inverse 2D DCT (using e.g. idct2)
to obtain the reconstructed image representations.

It is time to compare the results.

• Plot the original data, the compressed sensing reconstruction and the
least squares reconstruction next to each other (using e.g. subplot).
Also plot their DCT domain representations next to each other.

• Compute the Mean Squared Error (MSE) between original data and
recovered data and display it in the respective pictures (e.g. as xlabel).

• Determine the value of c where y = Ax becomes overdetermined us-
ing the previously computed δ, Equation (1) where you can omit the
ceiling operation d·e, and Equation (4). Set c accordingly and run the
program again – what changes do you observe? Why is that?

2. We are now ready to apply our Matlab script on real images that are com-
pressible but in general not sparse.

• Load Lena256.jpg into Matlab (use z = double(imread(’Lena256.jpg’));

to cast the data as double).

• Since the image is not sparse but only compressible, we have to define
our own δ this time. Try δ = 0.1, i.e., assume that only 10% of the
coefficients in DCT domain are ”important”. Use c = 3 to begin with.
Run the script and compare the results.

• As before, compute the value of c for which M > N using δ = 0.1.
Use that value for c and compare the new results.

You can now try different combinations of sparsity δ and the number of
samples multiplier c. The achieved compression factor computes as β = N

M
,

the ratio between total samples and stored samples.

Matlab help: Use imshow to display images – note that you may have to typecast
your image-matrix X with uint8(X) before plotting once you have performed
numerical operations on it.
Terms: discrete cosine transformation, compressed sensing, sparse and compress-
ible data, least squares, minimum norm solution.
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