Problem Set 10

Problem 10.1 Check if following discrete functions are valid autocorrelation functions:

a) $r[m] = m \cdot e^{-|m|}$

b)
$$r[m] = \cos(\theta_0 m)$$

c)
$$r[m] = a^{|m|}$$
, for $|a| < 1$

- d) $r[m] = \frac{1}{1+m^3}$
- e) $r[m] = \begin{cases} 1, & \text{for } |m| \le N_1 \\ 0, & \text{for } |m| > N_1 \end{cases}$

Find the mean power for those cases where r[m] is a valid autocorrelation function.

Problem 10.2 Let $z[n] = x \cos(\theta_0 n) + y \sin(\theta_0 n)$, where x and y are two uncorrelated zero-mean random variables.

- a) Find the mean and the autocorrelation function of z[n].
- b) Which condition must x and y fulfill if we want z[n] to be a wide-sense stationary process?
- c) Find the mean power and power spectral density (PSD) of the stationary process from the previous part and sketch the PSD.

Problem 10.3 Consider the real random process

$$\mathbf{x}[n] = e^{-\mathbf{a}n},$$

where \mathbf{a} is a random variable, uniformly distributed in the interval [0, 1].

- a) Calculate the mean of x[n].
- b) Calculate the autocorrelation function of x[n].
- c) Is x[n] stationary or wide-sense stationary?

Problem 10.4 Consider a random process $\mathbf{x}[n] = \mathbf{v}[n] + \mathbf{z}[n]$. Here, $\mathbf{v}[n] = \mathbf{a} \cos(\theta_0 n + \Phi)$ is a stationary process with a constant frequency θ_0 , a random amplitude \mathbf{a} uniformly distributed in the interval $[0, a_0]$, and a random phase Φ uniformly distributed in the interval $[-\pi, \pi[$. The random variables \mathbf{a} and Φ are statistically independent. The random process $\mathbf{z}[n]$ is zero-mean, stationary, white, and statistically independent dent of $\mathbf{v}[n]$, with power spectral density $S_n(e^{j\theta}) = \nu/2$.

- a) Calculate the mean, autocorrelation function, and power spectral density of $\mathsf{x}[n].$
- b) Suppose that x[n] is the input of an ideal bandpass filter with carrier frequency θ_c and bandwidth $2\theta_{BW}$. Calculate the mean power of the output signal y[n] (distinguish between the two cases: θ_0 in the pass band and θ_0 outside the pass band).